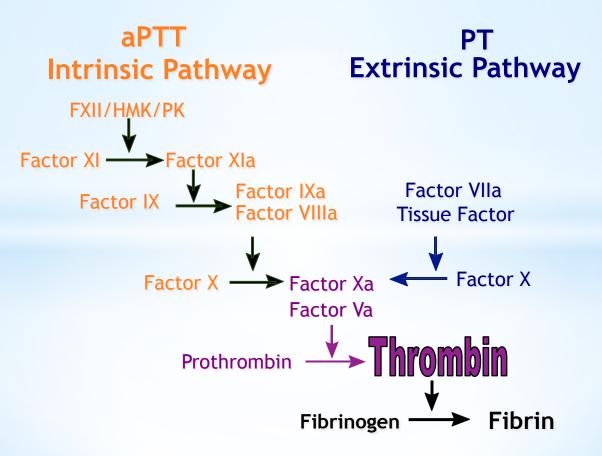
### Uterine Hemostasis is Achieved When There is Normal Coagulation

Maureane Hoffman, MD, PhD Professor of Pathology Duke University Medical Center Durham, North Carolina





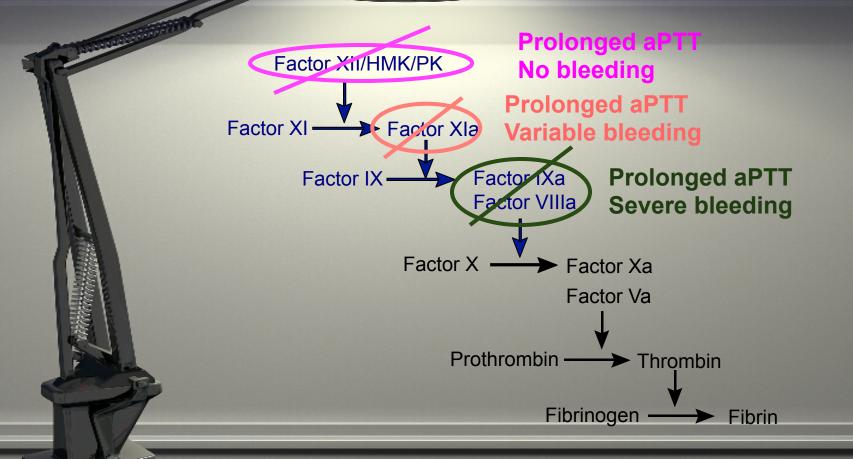
# First let's talk about coagulation a little


Coagulation = blood clotting

Hemostasis = stopping bleeding

Thrombosis = blood clotting in the wrong place i.e. inside a blood vessel




#### The Coagulation Cascade





### The "Cascade" model leads us to believe that the clotting time in the PT or PTT should predict hemostatic function in vivo

#### 



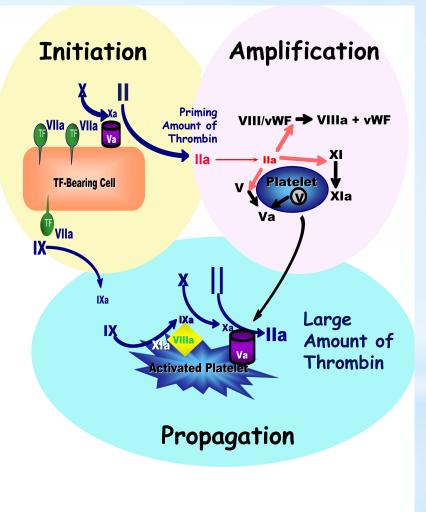


### The clotting time is <u>not</u> a reliable predictor of clinical bleeding



### Including cells in a model of hemostasis can explain some clinical observations better than the "Cascade" model



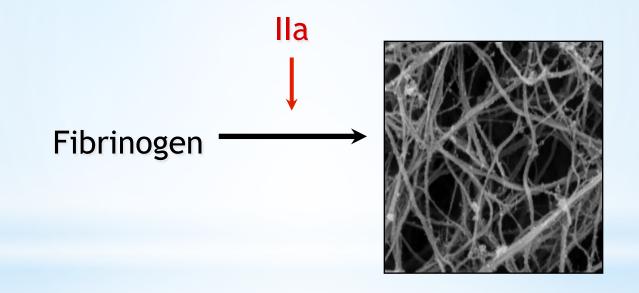

#### **Cell-based experimental model**

| cells      | monocytes (TF)<br>platelets | 1 pM TF | 15/uL<br>100,000/uL |
|------------|-----------------------------|---------|---------------------|
| proteins   | prothrombin                 | 1400 nM | 100 ug/mL           |
|            | factor VII                  | 10 nM   | 0.5 ug/mL           |
|            | factor IX                   | 70 nM   | 4 ug/mL             |
|            | factor X                    | 135 nM  | 8 ug/mL             |
|            | factor XI                   | 30 nM   | 5 ug/mL             |
|            | factor V                    | 20 nM   | 7 ug/mL             |
|            | factor VIII                 | 0.3 nM  | 0.1 ug/mL           |
| inhibitors | antithrombin                | 3000 nM | 200 ug/mL           |
|            | TFPI                        | 3 nM    | 0.1 ug/mL           |



#### A Cell-Based Model of Hemostasis

Hemostasis proceeds in overlapping steps on two cell surfaces: TF-bearing cells and platelets







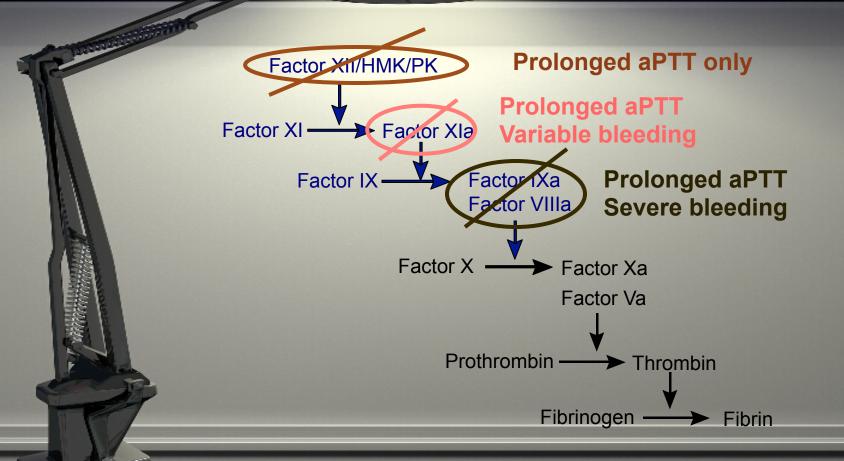



### **Clot Formation/Stabilization**





#### There Really Are "Intrinsic" and "Extrinsic" Pathways


They are not redundant - they operate on different surfaces to do different jobs

\* The "extrinsic" or TF pathway works on the initiating cell

\* The "intrinsic" pathway works on platelets to produce the thrombin "burst"

Hoffman & Monroe: A Cell-Based Model of Hemostasis. Thromb Haemostas. 2001; 85:958-65

The "Cascade" is not a good model of hemostasis





# Why do I think coagulation is important for uterine hemostasis?

- Women with coagulation defects have excessive uterine bleeding
- Mother nature thinks coagulation is important enough to give pregnant ladies extra coag factors - even at the risk of postpartum thrombosis

\* The placenta expresses high levels of tissue factor



# Excess menstrual bleeding is associated with coag defects

A consensus statement notes that in congenital bleeding disorders such as von Willebrand disease (vWD), "there is an increased incidence of pathological bleeding".

(James, et al. AJOG, 2009)



# Excess menstrual bleeding is associated with coag defects

Best evidence is available for vWD, because it is the most common inherited bleeding disorder

\* Prevalence of menorrhagia (HMB) is 74-92% in women with vWD

Women with rare bleeding disorders also have a greater risk of uterine bleeding, though numbers were small

\* Prevalence of menorrhagia (HMB) was 50% in a study of 101 women with FV, FVII, FX and combined FV/VIII deficiencies (Lukes, et al. *Fertil Steril*, 2005)



## Excess menstrual bleeding is associated with anticoagulation

In one study of 90 women treated with Vitamin K Antagonists, VKA (vanEijkeren, et al, 1990)

- \* 17.8% had menorrhagia before starting VKA
- \* 29.5% had menorrhagia after starting VKA (p<0.01)



## Excess menstrual bleeding is associated with anticoagulation

Non-vitamin K antagonist anticoagulants, NOACs, also associated with increased bleeding (Ferreira, et al, 2015; Myers, et al, 2016; Marten, 2015; Maas, et al, 2015)

\*Rivaroxaban was associated with greater incidence of menstruation >8 days, medical or surgical intervention for bleeding, and need to modify anticoagulant therapy than was VKA

\*Dabigatran was also associated with a higher incidence of bleeding than VKA



## Excess menstrual bleeding is associated with anticoagulation



Fig. 2. Menstrual disturbances - objective parameters. a. Duration of menstrual bleeding; b. Intermenstrual bleeding; c. Prolonged menstrual bleeding (more than 8 days). VKA denotes vitamin K antagonists, NS = not significant.

De Crem, et al, 2015



# Procoagulant activity increases during pregnancy

All aspects of hemostasis change during pregnancy

- \* Most of the clotting factors increase
- \* Anticoagulant and fibrinolytic activities decrease
- \* Placental TF increases during pregnancy

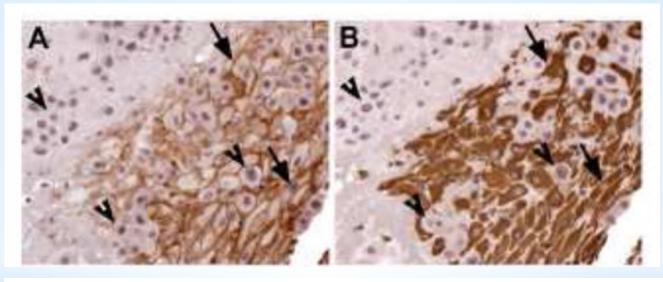


#### Table 1 Haemostatic changes in pregnancy<sup>9–19</sup>

| Haemostatic parameter            | Change at term<br>pregnancy (% change) |
|----------------------------------|----------------------------------------|
| Factors II and V                 | No change                              |
| Fibrinogen                       | Increases more than 100%               |
| Factor VII                       | Up to 1000% increase                   |
| Factors VIII, IX, X, XII and VWF | Increase more than 100%                |
| Factor XI                        | Variable                               |
| Factor XIII                      | Up to 50% decrease                     |
| Protein C                        | No change                              |
| Protein S                        | Up to 50% decrease                     |
| D-dimer                          | Up to 400% increase                    |
| Platelet count                   | Up to 20% decrease                     |



| Table 2. Summary of TF Expression in Human Tissues |                                                                                                                 |                        |  |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| Skin                                               | Epidermis<br>Dermis                                                                                             | +++<br>_               |  |  |
| Gut                                                | Mucosa<br>Submucosa<br>Muscularis                                                                               | +++<br>_<br>V (+)      |  |  |
| Vessels                                            | Intima<br>Media<br>Adventitia<br>Capillaries                                                                    | -<br>V(+)<br>++<br>-   |  |  |
| Heart                                              | Myocardium<br>Endocardium<br>Cardiac valves                                                                     | +++<br>_<br>_          |  |  |
| Lung                                               | Bronchial mucosa<br>Bronchial submucosa<br>Alveolar septae<br>Alveolar epithelial cells<br>Alveolar macrophages | ++<br>_<br>+<br>V (++) |  |  |
| Brain                                              | Meninges<br>Cerebral cortex                                                                                     | ++++                   |  |  |




### TF in endometrium is upregulated around the time of implantation

(Lockwood, et al. 2009)



#### TF is strongly expressed by decidual cells



#### Figure 1. Immunohistochemical analysis of tissue factor (TF) expression at the decidual/placental interface

Serial sections of decidual basalis were immunostained for TF and vimentin in an idiopathic preterm specimen (A: TF, and B: vimentin). Decidual cells (DCs) (arrows), identified by positive vimentin staining, exhibited strong peri-membranous TF staining. TF staining was virtually absent in interstitial trophoblast (arrowheads). Similar results were seen in term

Lockwood, et al. Thromb Res. 2009



### Adequate TF expression is essential for uterine hemostasis

Mice with reduced uterine TF suffer placental bleeding and about 16% suffer fatal post-partum hemorrhage

(Erlich, et al. PNAS. 1999)



While most uterine bleeding (menstrual or peripartum) is not due to disorders of coagulation normal coagulation is required to maintain uterine hemostasis