

### Uterine Hemostasis is Achieved By Uterine Contraction

Chad A Grotegut, MD Division of Maternal-Fetal Medicine







## **UTERINE ATONY**



#### Blood volume in pregnancy

## 50% Increase in Blood Volume in Pregnancy





#### Cardiac output in pregnancy







Cardiac output and placental blood flow

# 7.5 l/min 20% to the uterus 80% to the placenta





#### Potential for blood loss

# 7.5 l/min 20% to the mos 80% to the placenta





Labor results in myocyte depolarization and GPCR activation

- Gq-mediated calcium production
- SR release
- Activation of voltagegated calcium channels







Labor results in myocyte depolarization and GPCR activation

- Gq-mediated calcium production
- SR release
- Activation of voltage-gated calcium channels

Actin-myosin interactions

- prior to labor actin is in a globular form, unable to interact with myosin
- during labor, fibrillar actin is able to interact with myosin
  - myocyte contraction





#### Uterine atony risk factors

- Prolonged labor
- Prolonged oxytocin augmentation
- High-doses of oxytocin
- Uterine over-distension
  - macrosomia
  - multiple gestation
  - polyhydramnios
- Magnesium therapy
- Chorioamnionitis
- General anesthesia

OXTR Desensitization





# OXTR desensitization – prolonged oxytocin infusions

- Paradoxically associated with
  - Dysfunctional labor...cesarean
  - Uterine atony...postpartum hemorrhage





#### Prolonged oxytocin infusions



- Crall, 1991
  - Measured uterine activity following prolonged, constant oxytocin infusions
  - After fixed dose rate of more than 80-90 minutes, uterine activity decreased





#### Oxytocin exposure and atony

#### **Duke Data**

| Uterine atony with PPH and Tx | Control | p-value |
|-------------------------------|---------|---------|
| n=100                         | n=100   | -       |





#### Oxytocin exposure and atony

#### **Duke Data**

|                      | Uterine atony<br>with PPH and Tx<br>n=100 | Control<br>n=100 | p-value |
|----------------------|-------------------------------------------|------------------|---------|
| Age, yrs             | 27.6 ± 7.3                                | 27.2 ± 7.3       | 0.783   |
| EBL, ml              | 1579 ± 1205                               | 517 ± 236        | <0.001  |
| Oxt AUC, mU          | 10,054 ± 11,340                           | 3762 ± 7092      | <0.001  |
| Oxt max dose, mU     | 23.6 ± 11.7                               | 18.9 ± 9.8       | 0.107   |
| Oxt total time, mins | 892 ± 478                                 | 793 ± 437        | 0.431   |

aOR = 1.58 (95% CI 1.05, 2.57) AUC increase of 5000 mU ~ 4 hours at 20 mU/min





#### Oxytocin exposure and atony

#### MFMU Cesarean Registry

|                                        | Uterine Atony<br>n=2108 | Control<br>n=39,833 | Adjusted OR*<br>(95% Cl) | p-value |
|----------------------------------------|-------------------------|---------------------|--------------------------|---------|
| Age, yrs                               | 27.3 ± 6.3              | 27.8 ± 6.3          | 0.99 (0.97, 1.01)        | 0.15    |
| Hispanic Ethnicity, n (%)              | 691 (32.8)              | 9302 (23.3)         | 1.92 (1.47, 2.52)        | <0.0001 |
| BMI, kg/m²                             | 32.7 ± 6.7              | 32.2 ± 6.9          | 0.95 (0.87, 1.03)        | 0.16    |
| Nulliparous, n (%)                     | 1076 (51.0)             | 12,021 (30.2)       | 1.56 (1.14, 2.13)        | 0.005   |
| Magnesium, n (%)                       | 317 (15.0)              | 3139 (7.9)          | 1.76 (1.26, 2.46)        | 0.001   |
| Chorioamnionitis, n (%)                | 439 (20.8)              | 3373 (8.5)          | 1.86 (1.33, 2.61)        | 0.001   |
| Induction, n (%)                       | 827 (39.2)              | 10,831 (27.2)       | 1.02 (0.74, 1.39)        | 0.92    |
| Duration of oxytocin, hrs              | 10.5 (5.7, 15.8)        | 7.3 (3.8, 12.2)     | 1.05 (0.96, 1.14)        | 0.31    |
| Maximal infusion >20 mU/<br>min, n (%) | 532 (25.2)              | 3995 (10.0)         | 1.52 (1.15, 2.00)        | <0.0001 |

Ŷ

\*Adjusted OR for uterine atony while controlling for all listed variables and DM, HTN



## Prolonged or high-dose oxytocin exposure during labor **Decreases** in uterine contractility postpartum Uterine atony





# Prolonged or high-dose oxytocin exposure during labor

# Oxytocin receptor desensitization as a mechanism

## **Uterine atony**





Uterine contraction phenotype

# Phasic Tonic





#### Uterine contraction phenotype

- Labor characterized by <u>phasic contractions</u>
  allows for placental gas exchange during uterine relaxation
- Postpartum state characterized by <u>tonic / tetanic</u> <u>contractions</u>
  - allows for closure of the uteroplacental arteries
- Molecular mechanisms regulating this transition are not known
- Failure of producing a tetanic contraction postpartum
  - Uterine atony and PPH





#### Uterine contraction phenotype labor = phasic





Modified from Phillippe M, et al. Am J Physiol Endocrinol Metab. 1997





Provided by Brancazio LR



#### Uterine contraction phenotype postpartum = tonic / tetanic











# Prevention of Uterine Atony



#### Postpartum Oxytocin

- Oxytocin boluses
  - mainstay of uterine atony prevention
  - used prophylactically postpartum
  - dosing is 50-300 fold greater than augmentation dosing
    - results in tonic, rather than phasic contraction patterns







### Oxytocin signaling



#### Oxytocin receptor = OXTR

- G protein-coupled receptor
- Activates Gq
- Increases intracellular calcium





#### **OXTR** desensitization







#### OXTR desensitization – contraction responses





#### OXTR desensitization – contraction responses







Grotegut et al. Am J . Physiol Endocrinol Metab. 2011



#### **OXTR** desensitization











Time, hours

0 –



Grotegut, et al. Mol Endocrinol. 2016



#### OXTR desensitization – contraction responses

- OXTR desensitization
  - leads to decreases in uterine contractility
  - increases risk for uterine atony
- Absent OXTR desensitization
  - leads to increases in uterine contractility
- Are there individual variations in OXTR desensitization that could account for different contractile phenotypes?





#### Genetic predisposition to GPCR desensitization

#### ARTICLES



## A GRK5 polymorphism that inhibits $\beta$ -adrenergic receptor signaling is protective in heart failure

Stephen B Liggett<sup>1,6,7</sup>, Sharon Cresci<sup>2,7</sup>, Reagan J Kelly<sup>3,7</sup>, Faisal M Syed<sup>1</sup>, Scot J Matkovich<sup>2</sup>, Harvey S Hahn<sup>1</sup>, Abhinav Diwan<sup>1</sup>, Jeffrey S Martini<sup>4</sup>, Li Sparks<sup>1</sup>, Rohan R Parekh<sup>1</sup>, John A Spertus<sup>5</sup>, Walter J Koch<sup>4</sup>, Sharon L R Kardia<sup>3</sup> & Gerald W Dorn II<sup>1,2</sup>

Enhanced β2-adrenergic desensitization = "genetic beta-blockade"



Liggett et al. Nat Med, 2008



#### Genetic predisposition to GPCR desensitization

- Precedent exists in the β2AR-GRK5 systemenhanced GPCR desensitization
- Could genetic variation exist in the OXTR-GRK6 system which affects:
  - oxytocin dosing in labor (higher)
  - duration of labor (longer)
  - mode of delivery (failed labor)
  - uterine atony (PPH)
- Gene-association studies related to labor have largely focused on preterm delivery



### Objective

• To determine if genetic variation in the OXTR or in GRK6 could explain variation in oxytocin dosing and labor outcomes among women being induced near term





### Study Design

- IRB-approved
- Duke Healthy Pregnancy, Healthy Baby Cohort
  - observational study of environmental exposure on pregnancy outcomes
- DNA obtained from 482 women undergoing induction of labor near term at Duke University Hospital
  - singleton gestation
  - non-anomalous
- Genotyped for haplotype tagging SNPs within the OXTR and GRK6 genes



### Study outcomes

- Primary study outcome:
  - maximal rate of oxytocin infusion
- Secondary outcomes:
  - total dose of oxytocin received in labor
  - duration of induced labor
  - cesarean delivery rate
  - cesarean rate for failed induction
  - uterine atony rate





#### SNP selection and genotyping cont.

- Genotyping performed by the Duke Molecular Physiology Institute's Molecular Genotyping Core facility
  - Taqman SNP genotyping assays
  - Blinded duplicates and Centre d'Etude du Polymorphism Humain (CEPH) samples included as controls
  - Hardy-Weinberg Equilibrium (HWE) p-values as well as allele and genotype frequencies calculated by ethnicity
    - PROC ALLELE SAS

#### Statistical analysis

- Linear regression tested association between SNPs and continuous outcome variables
- Logistic regression tested association between SNPs and categorical outcome variables
- Clinically important covariates selected a priori
  - backwards selection used to choose covariates that independently correlated with each outcome
- Additive genetic model was employed
- Race/ethnicity included in all models



#### SNP selection and genotyping

- Haplotype tagging SNPs identified using LD Select from the Yoruban (YRI) and Caucasian (CEU) populations of the HapMap project
  - MAF of ≥ 10%
- All identified SNPs genotyped for subjects that self-reported as
  - non-Hispanic white
  - non-Hispanic black
  - Hispanic
  - non-Hispanic Asian



#### **OXTR SNP locations**

OXTR gene: chromosome 3 (p25.3)



| rs11131149 | rs237888  | rs2139184  | rs2324728 |
|------------|-----------|------------|-----------|
| rs237894   | rs4686301 | rs237886   | rs9872310 |
| rs237895   | rs9840864 | rs11706648 | rs1042778 |
| rs2268495  | rs9810278 | rs237887   |           |
| rs237899   | rs2254295 | rs2268490  |           |



OXTR: 18 haplotype tagging SNPs

#### **GRK6 SNP locations**

GRK6 gene: chromosome 5 (q35.3)







#### Subject characteristics

| Characteristic                       | Value<br>(n=482) |
|--------------------------------------|------------------|
| Age, years                           | $26.9 \pm 6.4$   |
| Race/ethnicity                       |                  |
| Non-Hispanic white                   | 91 (18.9)        |
| Non-Hispanic black                   | 341 (70.7)       |
| Hispanic                             | 24 (5.0)         |
| Non-Hispanic Asian                   | 26 (5.4)         |
| Pre-pregnancy BMI, kg/m <sup>2</sup> | 30.1 ± 9.4       |
| Nulliparous                          | 230 (47.7)       |
| Gestational age at delivery, weeks   | 38.9 ± 1.5       |
| Birthweight, g                       | 3203 ± 552       |
| Cesarean delivery                    | 143 (30.0)       |



#### Maximal oxytocin infusion rate



| SNP (gene)                | Genotype (n):<br>Maximal oxytocin infusion rate (mU/min)                  | p-value <sup>1</sup> |
|---------------------------|---------------------------------------------------------------------------|----------------------|
| rs1042778 ( <i>OXTR</i> ) | GG (n=91): 10.9 ± 6.6<br>GT (n=187): 13.8 ± 7.6<br>TT (n=140): 14.0 ± 7.6 | 0.004                |



<sup>1</sup>While controlling for race/ethnicity, cervical dilation at start of induction, pre-pregnancy BMI, gestational age at delivery, chronic HTN, and magnesium therapy

#### Maximal oxytocin infusion rate



| SNP (gene)                 | Genotype (n):<br>Maximal oxytocin infusion rate (mU/min)                  | p-value <sup>1</sup> |
|----------------------------|---------------------------------------------------------------------------|----------------------|
| rs1042778 ( <i>OXTR</i> )  | GG (n=91): 10.9 ± 6.6<br>GT (n=187): 13.8 ± 7.6<br>TT (n=140): 14.0 ± 7.6 | 0.004                |
| rs11706648 ( <i>OXTR</i> ) | AA (n=272): 12.7 ± 7.3<br>AC (n=132): 14.0 ± 7.5<br>CC (n=16): 16.4 ± 8.6 | 0.021                |
| rs4686301 ( <i>OXTR</i> )  | CC (n=297): 12.7 ± 7.3<br>CT (n=111): 14.3 ± 7.6<br>TT (n=12): 17.6 ± 9.4 | 0.016                |
| rs9810278 ( <i>OXTR</i> )  | CC (n=354): 12.9 ± 7.4<br>CT (n=64): 15.4 ± 7.7<br>TT (n=2): 11.0 ± 1.4   | 0.022                |
| rs237895 ( <i>OXTR</i> )   | CC (n=270): 13.8 ± 7.6<br>CT (n=125): 12.0 ± 7.2<br>TT (n=24): 12.9 ± 7.6 | 0.027                |

**e** 

<sup>1</sup>While controlling for race/ethnicity, cervical dilation at start of induction, pre-pregnancy BMI, gestational age at delivery, chronic HTN, and magnesium therapy



#### Total oxytocin dose

| SNP (gene)                | Genotype (n):<br>Total oxytocin dose (mU)                                              | p-value <sup>1</sup> |
|---------------------------|----------------------------------------------------------------------------------------|----------------------|
| rs1042778 ( <i>OXTR</i> ) | GG (n=94): 6,852 ± 7,871<br>GT (n=196): 10,159 ± 9,787<br>TT (n=143): 10,425 ± 10,658  | 0.015                |
| rs4686301 ( <i>OXTR</i> ) | CC (n=308): 8,961 ± 9,377<br>CT (n-114): 10,874 ± 10,682<br>TT (n=13): 11,426 ± 10,092 | 0.034                |



<sup>1</sup>While controlling for race/ethnicity, cervical dilation at start of induction, pre-pregnancy BMI, gestational age at delivery, chronic HTN, and magnesium therapy



#### **Duration of labor**

| SNP (gene)                | Genotype (n):<br>Duration of labor (hours)                                    | p-value <sup>1</sup> |
|---------------------------|-------------------------------------------------------------------------------|----------------------|
| rs9810278 ( <i>OXTR</i> ) | CC (n=406): 20.2 ± 14.5<br>CT (n=68): 22.6 ± 16.9<br>TT (n=2): 14.4 ± 2.8     | 0.041                |
| rs2731664 ( <i>GRK6</i> ) | AA (n=114): 17.7 ± 13.7<br>AC (n=223): 20.2 ± 14.3<br>CC (n=132): 23.5 ± 16.5 | 0.001                |
| rs2287694 ( <i>GRK6</i> ) | CC (n=0): no subjects<br>CT (n=55): 26.2 ± 18.9<br>TT (n=421): 19.7 ± 14.1    | 0.009                |



<sup>1</sup>While controlling for race/ethnicity, nulliparity, cervical dilation at start of induction, pre-pregnancy BMI, gestational age at delivery, and diabetes



ę

#### Cesarean delivery rate

| SNP (gene)                | Genotype (n):<br>Cesarean delivery rate                             | p-value <sup>1</sup><br>(aOR, [95% Cl])    |
|---------------------------|---------------------------------------------------------------------|--------------------------------------------|
| rs2139184 ( <i>OXTR</i> ) | AA (n=6/16): 37.5%<br>AC (n=35/110): 31.8%<br>CC (n=101/355): 28.4% | 0.023<br>(aOR 0.55 [95% CI 0.33,<br>0.92]) |
| rs237888 ( <i>OXTR</i> )  | CC (n=10/47): 21.3%<br>CT (n=46/174): 26.4%<br>TT (n=87/261): 33.3% | 0.025<br>(aOR 1.68 [95% CI 1.07,<br>2.66]) |
| rs2545796 ( <i>GRK6</i> ) | CC (n=19/54): 35.2%<br>CT (n=57/203): 28.1%<br>TT (n=66/224): 29.5% | 0.032<br>(aOR 0.64 [95% CI 0.43,<br>0.96]) |

<sup>1</sup>While controlling for race/ethnicity, nulliparity, cervical dilation at start of induction, pre-pregnancy BMI, gestational age at delivery, chorioamnionitis, diabetes, and magnesium therapy









# Genetic predisposition to GPCR desensitization

- Among women undergoing induction of labor near-term, *OXTR* and *GRK6* genotype influence:
  - maximal oxytocin infusion rate
  - total dose of oxytocin received
  - duration of induced labor
  - cesarean delivery rate
- Too few cases of uterine atony in cohort
- Outcomes suggest that genetic predisposition affects contractile phenotypes





# Genetic predisposition to GPCR desensitization

- Genetic variations in the OXTR-GRK6 system affect oxytocin dosing requirements and labor outcomes
- Identifying the functional significance of these variations may allow for personalization of labor management
- May explain racial/ethnic or individual risk variation seen for PPH





Uterine hemostasis is achieved by uterine contraction - Summary

- Transition of uterine contraction phenotype from phasic to tonic pattern is important to control PP blood loss
- Oxytocin is the mainstay for prevention of uterine atony
  - boluses of oxytocin produce a tonic contraction response
- OXTR desensitization contributes to risk for uterine atony
  - possible genetic predisposition





# **Questions?**