UTERINE HEMOSTASIS IS ACHIEVED THROUGH NORMAL PLATELET FUNCTION

Gow Arepally, MD Duke University Medical Center 4/6/2017

Case presentation

Overview of normal hemostasis

Platelets in normal uterine hemostasis

Platelets in abnormal uterine bleeding

- 43 yo F with h/o chronic thrombocytopenia (40-50k) consulted for menorrhagia
- 1 week before, underwent a myomectomy 7/4-7/6/13 for massive vaginal bleeding secondary to prolapsing uterine fibroids; received platelet transfusions
- Patient did well post-procedure and was discharged to home
- Traveled to home ~6 hour car ride ~2 days after surgery to spend time with her family
- Soon after arrival, noted increased vaginal bleeding requiring a pad change every 2 hours
- Patient came to ED, near syncopal; Hb=8
- Given platelet transfusion, treatment with Amicar and seen by gynecology

GM MED HISTORY

- Presentation at 1 yo age with thrombocytopenia
 - ~40-60K; h/o nosebleeds at age 8-9 lasting for hours
 - o diagnosed as ITP; unsuccessful treatments with steroids, IVIG
- Hemostatic stressors:
 - o childhood injuries (bike trauma, softball injury) without significant bleeding
 - o menarche at age 15
 - first cycle lasting for 4 weeks
 - recalls being near syncopal at times and required transfusions.
 - patient developed significant anemia requiring transfusion
 - She was started on OCPs shortly thereafter
 - On OCPs, her menstrual cycles would last 6-7 days and were heavy.
- She recalls being iron deficient during her college years.
- Three children by vaginal delivery (2003, 2005, 2008) without bleeding
- Seen at Cleveland Clinic and diagnosed by genetic testing to be homozygous for Bernard Soulier Syndrome

BERNARD SOULIER SYNDROME

- Autosomal recessive disorder (1:10⁶)
- Clinical features
 - morphologically enlarged platelets
 - Variable thrombocytopenia
 - Mucocutaneous bleeding
- Deficiency of GP Ib-IX-V complex (vWF receptor) on platelets
- Physiologic role:
 - mediates adhesion to the blood vessel wall at sites of injury by binding vWF
 - facilitates the ability of thrombin at low concentrations to activate platelets

ILLUSTRATIVE CASE

- Variable bleeding history
 - Recurrent epistaxis & heavy menstrual bleeding
 - No bruising or bleeding with childhood trauma or pregnancies
- Iron deficiency
- Bleeding out of proportion to platelet count abnormality
- BSS platelet defect role of platelet adhesion and function in uterine hemostasis

HEMOSTASIS

- Finely tuned host defense mechanism
- Involves vessel wall, platelets, and plasma coagulation proteins
- End product of coagulation: generation of a fibrin clot
- Hemostasis: physiologic
- Thrombosis: pathologic

PRIMARY HEMOSTASIS

- Platelets
- Endothelium/vessel wall
- vWF & other adhesive proteins (fibrinogen)

Formation of a Hemostatic Plug

- Platelets do not adhere to normal endothelium.
- Platelets adhere with help from vWF to the subendothelial matrix.
- Platelets aggregate to form the 1° hemostatic plug.
- Platelets accelerate fibrin formation to form the 2° hemostatic plug.

NORMAL MENSTRUATION

- Result of autodigestion of non-gestational endometrium
- Menstrual tissue: functionalis layer rich in RBCs, inflammatory cells and proteolytic enzymes

Shed at menstruation

UTERINE HEMOSTASIS CHRONOLOGY

Morphological Study of Normal Menstruation

- Study Aim: mechanisms of hemostasis during first hours of normal menstruation
- Methods:
 - Hysterectomy performed (n=9) during first 72 hours of menstruation
 - Age <46 years; regular cycles/normal menstruation; no hormonal Rx in last 2 cycles
 - Admitted day before menstruation
 - Eight uteri removed between 3 $^{1\!\!/_2}$ to 72 hours
 - 1 pre-menstrual; 2 control uteri

PREMENSTRUAL UTERUS

- Uterus covered by epithelium
- Limited extravasation of blood and infiltration of white cells
- Thin walled vessels in functional layer lose continuity
- Holes in endothelium and loss of basement membrane
- Subendothelium exposed to vessel lumen

No adherent platelets

Christiaens, et al. Br J Obstet Gynecol 1980; 87:425-439

EARLY MENSTRUATION (3.5-13 hrs.)

- Thrombi occlude vessels
- Vessels filled with platelets or degranulated platelets and fibrin
- Increased WBCs
- Thrombi greatest by 7 hours
- Sequential deposition of platelets and fibrin
- Extravasation, disintegration, shedding and plug formation moves gradually toward the basal endometrium

Christiaens, et al. Br J Obstet Gynecol 1980; 87:425-439

PLTS & SEX HORMONES

Platelet counts change with menstrual cycle

20 females Samples drawn Menstrual: 2nd day Proliferative: 6-9 days Secretory: 22-24 days

PLTS & SEX HORMONES

- Number of α2- adrenergic receptors peaks at the onset of menses and drops to 74% to 79% of that value during mid-cycle¹
- Estrogen- and androgen-responsive genes (nitric oxide synthase--an inhibitor of platelet aggregation), superoxide dismutase, gp130, and thromboxane A2, found in megakaryocytes and/or platelets
- Megakaryocytes and platelets express the estrogen receptor (ER) β and androgen receptor (AR)²
- Murine β -ER knock-out has normal hemostasis

- 2. Khetawat, et al. *Blood*. 2000;95:2289-2296
- 3. Jayachandran, et al. J Gerontol A Biol Sci Med Sci. 2005; 60 (7):815-819

^{1.} Jones, SB, et al. Clin Pharmacol Ther. 1983;34:90

- Definition: menstrual loss >60-80 mL/cycle or >7 days
- Prevalence ~9-14% of reproductive age women
- Causes multifactorial
 - ~50% remain unidentified
- Menorrhagia may be most reliable prognostic indicator of hemostatic disorder

AUB AS INDICATOR OF AN UNDERLYING BLEEDING D/O

- Case / control study of HMO
- 121 women with AUB and 123 controls
- Testing:
 - Bleeding time, vWF panel, Factors II, V, VII, IX, X, XI, and XII, platelet aggregation
 - Abnormal studies repeated
- Only 1 patient in each group with a FH of diagnosed bleeding disorder

Diagnosis	Menorrhagia (n=121)	Controls (n=123)	р	Odds Ratio (95% CI)
von Willebrand Disease	8 (6.6%)	1(0.8%)	0.02	8.6 (1.3, 194.6)
Factor deficiencies (FVII & FXI)	2 (1.6%)	0	0.2	NA
Platelet defects	3 (2.5%)	3 (2.4%)	1.0	1.0 (0.2 <i>,</i> 6.0)
Total	13 (10.7%)	4 (3.2%)	0.01	3.6 (1.2, 13.0)

Dilley, et al. Obstet Gynecol. 2001; 97:630-6

OTHER NON-MENSTRUAL SXS

	Bleedin	g Disorder				
Bleeding Sxs	Yes (n=17)	No (n=227)	р	OR (95%CI)		
Bruising	6 (35.3%	52 (22.9%)	0.3	1.8 (0.6, 5.2)		
Epistaxis	1 (5.9%)	4 (1.8%)	0.3	3.4 (0.13, 29)		
Gum Bleeding	0	25 (11%)	0.2	0(0, 1.7)		
Post-operative bleeding	0	9 (5.5%)	0.5	0 (0, 6.0)		
Bleeding after dental surgery	1 (6.7%)	15 (7.9%)	0.9	0.9 (0.04, 5.3)		
Postpartum bleeding	1 (6.7%)	26 (18.6%)	0.7	0.5 (0.06, 3.8)		
Sixty-five (54%) of 121 menorrhagia (HMB) reported no other symptoms						

Dilley, et al. Obstet Gynecol. 2001; 7:630-6)

EVALUATION FOR PLT DISORDERS

- Family history of bleeding
- Duration of bleeding from menarche
- Bleeding history (particularly hemostatic stressors: child birth, dental procedures)
- Laboratory testing:
 - PT/aPTT, Fibrinogen
 - vWD (D1-4 of menstrual cycle)
 - Platelet aggregation studies

TREATMENT

Local

uterine curettage uterine artery embolization hysterectomy

Systemic treatments

IV/oral estrogens
High dose oral contraceptives (combined oestrogen and progestin)
High dose oral progestins
Anti-fibrinolytic therapies
Targeted therapies: desmopressin, factor concentrate, or blood products

HEMOSTATIC THERAPIES

Agent	Mechanism of Action	Dose
Vasopression/DDAVP	 Increases FVIII and vWF levels Increases adhesion of plts to vessel walls 	IV: 0.3 mcg/kg Spray: 150 mcg spray/nostril
Anti-fibrinolytic agents (Tranexamic acid/Amicar)	 TA: Displaces plasminogen from fibrin Amicar: blocks binding of plasminogen to fibrin 	<u>Acute bleeding</u> : TA: 10 mg/kg q 8h IV Amicar: 1 g/h IV or 1-4 g q 4- 8h <u>Chronic bleeding:</u> TA: 1 g q 6-8hrs Amicar: 500 mg -1g q8h
Humate P/vWF	Replacement of vWF	40-60 units vWF: RCo activity loading; followed by 40-60 U q 12 h
Platelets	Replacement	1 unit as needed

CONCLUSIONS

Platelet function essential for normal menstruation

- $\circ~$ As revealed by histologic data
- And high incidence of abnormal uterine bleeding in patients with platelet disorders

Platelets respond to hormonal cues

Multi-disciplinary approach employing local and systemic measures can ameliorate bleeding caused by defective platelets.

THANK YOU

