DRINKING WATER STATE REVOLVING FUND ENGINEERING REPORT

RAW WATER PUMP STATION IMPROVEMENTS

MONTGOMERY COUNTY, NORTH CAROLINA

TWC PROJECT No: 3288-K

DWI PROJECT NOS.: H-SRP-D-18-0161 AND WIF1951

ORIGINAL: NOVEMBER 2018

COURTNEY M. GAMBLE, P.E.
PROJECT ENGINEER

300 S. MAIN ST, LOWER LEVEL WINSTON-SALEM, NC 27101 LICENSE NO. F-0115

APPLICANT CONTACT INFORMATION

APPLICANT: MONTGOMERY COUNTY

CONTACT NAME: CHRIS HILDRETH, DIRECTOR OF DEVELOPMENT & INFRASTRUCTURE

Address: 102 East Spring Street

PO Box 1388

Troy, NC 27371

TELEPHONE: (910) 220-7103 FAX: (910) 576-4566

EMAIL: <u>CHRIS.HILDRETH@MONTGOMERYCOUNTYNC.COM</u>

REPORT ENGINEER CONTACT INFORMATION

ENGINEERING FIRM: THE WOOTEN COMPANY

DESIGN ENGINEER: COURTNEY M GAMBLE, P.E.

ADDRESS: 300 S MAIN ST, LOWER LEVEL

WINSTON-SALEM, NC 27101

TELEPHONE: (336) 722-5326 FAX: (336) 722-5329

EMAIL: CGAMBLE@THEWOOTENCOMPANY.COM

Table of Contents

1.0	Execut	ive Summary	1
2.0	Existin	g Facilities and Project Planning	2
2.1		RWPS Condition	
	2.1.1	General RWPS Condition	2
	2.1.2	Historical Water Demand	3
	2.1.3	Specific Equipment to be Replaced or Rehabilitated Description	4
2.2	2.2.1	Current Population Current Population Data	
2.3		Water Demand	. 8
	2.3.1	Current Water Demand	8
	2.3.2	Population and Flow Projections	9
	2.3.3	Water Demand Projections	١0
3.0	Purpos	se and Need1	.2
3.1 4.0	Alterna	Need for the Project	
4.1		Preferred Alternative – Alternative No. 1 – RWPS Improvements with 6 MG Replacement Pumps	
	4.1.1	Preferred Alternative – Alternative No. 1 – Capital Costs	.7
	4.1.2	Preferred Alternative – Alternative No. 1 – Project Cost Life Cycle Assumptions	.8
	4.1.3	Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 1 to 5)	.9
	4.1.4	Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 6 to 10)	20
	4.1.5	Preferred Alternative – Alternative No. 1 – Replacement Costs (Year 11 to 15)	<u>'</u> 1
	4.1.6	Preferred Alternative – Alternative No. 1 – Replacement Costs (Year 16 to 20)	22
	4.1.7	Preferred Alternative – Alternative No. 1 – Present Value of Operations and Maintenand Costs (Year 1 to 10)	
	4.1.8	Preferred Alternative – Alternative No. 1 – Present Value of Operations and Maintenand Costs (Year 11 to 20)	
	4.1.9	Preferred Alternative – Alternative No. 1 – Present Value of Intermittent Operations ar Maintenance Costs (Year 1 to 10)	
	4.1.10	Preferred Alternative – Alternative No. 1 – Present Value of Intermittent Operations ar Maintenance Costs (Year 11 to 20)	

4.2		Alternative No. 2 – RWPS Improvements with 4 MGD Replacement Pumps
	4.2.1	Alternative No. 2 – Capital Costs
	4.2.2	Alternative No. 2 – Project Cost Life Cycle Assumptions
	4.2.3	Alternative No. 2 – Replacement Costs (Years 1 to 5)
	4.2.4	Alternative No. 2 – Replacement Costs (Years 6 to 10)29
	4.2.5	Alternative No. 2 – Replacement Costs (Year 11 to 15)
	4.2.6	Alternative No. 2 – Replacement Costs (Year 16 to 20)
	4.2.7	Alternative No. 2 – Present Value of Operations and Maintenance Costs (Year 1 to 10) $.32$
	4.2.8	Alternative No. 2 – Present Value of Operations and Maintenance Costs (Year 11 to 20) 32 $$
	4.2.9	Alternative No. 2 – Present Value of Intermittent Operations and Maintenance Costs (Year 1 to 10)
	4.2.10	Alternative No. 2 – Present Value of Intermittent Operations and Maintenance Costs (Year 11 to 20)
4.3		Alternative No. 3 – RWPS Improvements with 6 MGD Replacement Pumps and VFDs \dots 34
	4.3.1	Alternative No. 3 – Capital Costs
	4.3.2	Alternative No. 3 – Project Cost Life Cycle Assumptions
	4.3.3	Alternative No. 3 – Replacement Costs (Years 1 to 5)
	4.3.4	Alternative No. 3 – Replacement Costs (Years 6 to 10)
	4.3.5	Alternative No. 3 – Replacement Costs (Year 11 to 15)
	4.3.6	Alternative No. 3 – Replacement Costs (Year 16 to 20)40
	4.3.7	Alternative No. 3 – Present Value of Operations and Maintenance Costs (Year 1 to 10) $$.41
	4.3.8	Alternative No. 3 – Present Value of Operations and Maintenance Costs (Year 11 to 20) 41 $$
	4.3.9	Alternative No. 3 – Present Value of Intermittent Operations and Maintenance Costs (Year 1 to 10)
	4.3.10	Alternative No. 3 – Present Value of Intermittent Operations and Maintenance Costs (Year 11 to 20)
4.4	4.4.1	Alternative No. 4 – No Action
	4.4.2	Alternative No. 4 – Project Cost Life Cycle Assumptions
	4.4.3	Alternative No. 4 – Replacement Costs
	4.4.4	Alternative No. 4 – Present Value of Operations and Maintenance Costs
	4.4.5	Alternative No. 4 – Present Value of Intermittent Operations and Maintenance Costs 44
4.5		Alternatives Analysis Summary

	4.5.1	Total Present Worth for Feasible Alternatives	46
4.6		Project Description	47
	4.6.1	Preferred Alternative Project Description	47
5.0	Enviro	nmental Information Document	49
6.0	Financ	cial Analysis	50
6.1		Applicant's/LGU's Financial Condition	50
6.2		Funding Distribution	
6.3		Year 1 Interest and Repayment	51
6.4		User Fee Increase Due to Project	52
6.5		Impacts to User Rates	53
6.6		Impact to Bills Due to Project	
7.0	Public	Participation	
Ind	ex of Ta	bles	
Tab	le 2.1.1	General RWPS Condition	2
Tab	le 2.1.2.	Historical Water Demand Data	3
Tab	le 2.1.3	Specific Equipment to be Replaced or Rehabilitated Description	4
	le 2.2.1	Current Population Data	7
	le 2.3.1	Current Water Demand	8
	le 2.3.2	Population and Flow Projections	9
	le 2.3.3	Design Flow Analysis	10
	le 3.1	Need for Project	12
	le 4.1	RWPS Improvements with 6 MGD Replacement Pumps	14
	le 4.1.1	Preferred Alternative – Alternative No. 1 – Capital Costs	17
	le 4.1.2	Preferred Alternative – Alternative No. 1 – Project Cost Life Cycle Assumptions	18
	le 4.1.3	Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 1 to 5)	19
	le 4.1.4	Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 6 to 10)	20
	le 4.1.5	Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 11 to 15)	21
	le 4.1.6	Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 16 to 20)	22
Tab	le 4.1.7	Preferred Alternative – Alternative No. 1 – Present Value of Operations and	22
T- l-	l- 440	Maintenance Costs (Year 1 to 10)	23
rab	le 4.1.8	Preferred Alternative – Alternative No. 1 – Present Value of Operations and	22
Tah	lo 4 1 0	Maintenance Costs (Years 11 to 20)	23
Tab	le 4.1.9	Preferred Alternative – Alternative No. 1 – Present Value of Intermittent Operation Maintenance Costs (Year 1 to 10)	ارد عالم 24
Tah	le 4.1.10	Preferred Alternative – Alternative No. 1 – Present Value of Intermittent Operation	
Tab	16 4.1.10	Maintenance Costs (Years 11 to 10)	24
Tah	le 4.2	Alternative No. 2 – RWPS Improvements with 4 MGD Replacement Pumps	25
	le 4.2.1	Capital Cost RWPS Improvements	26
	le 4.2.2	Project Cost Life Cycle Assumption	27
	le 4.2.3	Alternative No. 2 – Replacement Costs (Years 1 to 10)	28
	le 4.2.4	Alternative No. 2 – Replacement Costs (Years 6 to 10)	29
	le 4.2.5	Alternative No. 2 – Replacements Costs (Years 11 to 15)	30

Table 4.2.6	Alternative No. 2 – Replacement Costs (Years 16 to 20)	31
Table 4.2.7	Alternative No. 2-Present Value of Operations and Maintenance Costs (Years 1 to 10)32
Table 4.2.8	Alternative No. 2-Present Value of Operations and Maintenance Costs	
	(Years 11 to 20)	32
Table 4.2.9	Alternative No. 2 Present Value of Intermittent Operations and Maintenance Costs	
	(Years 1 to 10)	33
Table 4.2.10	Alternative No. 2 Present Value of Intermittent Operations and Maintenance Costs	
	(Years 11 to 20)	33
Table 4.3	RWPS Improvements with 6 MGD Replacement Pumps and VFDs Alternative No. 3	34
Table 4.3.1	Alternative No. 3 – Capital Costs	35
Table 4.3.2	Project Cost Life Cycle Assumptions	36
Table 4.3.3	Alternative No. 3 – Replacement Costs (Years 1 to 10)	37
Table 4.3.4	Alternative No. 3 – Replacement Costs (Years 6 to 10)	38
Table 4.3.5	Alternative No. 3 – Replacement Costs (Years 11 to 15)	39
Table 4.3.6	Alternative No. 3 – Replacement Costs (Years 16 to 20)	40
Table 4.3.7	Alternative No. 3 – Present Value of Operations and Maintenance Costs	
	(Years 1 to 10)	41
Table 4.3.8	Alternative No. 3 – Present Value of Operations and Maintenance Costs	
	(Years 11 to 20)	41
Table 4.3.9	Alternative No. 3 – Present Value of Intermittent Operations and Maintenance Costs	
	(Years 1 to 10)	42
Table 4.3.10	Alternative No. 3 – Present Value of Intermittent Operations and Maintenance Costs	
	(Years 11 to 20)	42
Table 4.4	Alternative No. 4 – No Action	43
Table 4.5	Alternatives Analysis Summary	45
Table 4.5.1	Total Present Worth for Feasible Alternatives	46
Table 4.6.1	Preferred Alternative Project Description	47
Table 6.1	Applicant's/LGU's Financial Condition	50
Table 6.2	Funding Distribution	51
Table 6.3	Year 1 Interest and Repayment	51
Table 6.4	User Fee Increase Due to Project	52
Table 6.5	Impacts to User Rates	53
Table 6.6	Impact to Bills Due to Project	54

INDEX OF APPENDICES

Appendix 1	Submittal Chec	klist
Appendix 2	Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	Vicinity Map Montgomery County WTP Service Area Alternative No. 1 - Preferred Alternative Alternative No. 2 Alternative No. 3
Appendix 3		ent, CIP, and Record Drawings
3.a		ake Asset Assessment
3.b	Capital Improv	
3.c	RWPS Record [prawings
Appendix 4	Population and	f Flow Data
4.a	WTP Service A	rea – Historical Population Data
4.b	WTP Service A	rea – 2017 Demands by User Type
4.c	WTP Service A	rea – Summary of Population Projections
4.d	WTP Service A	rea – Future Demands by User Type
4.e	Summary of Flo	ow Projections – Individual Systems Breakdown
4.f	Montgomery C	County LWSPs: 2012 – 2017
4.g	Montgomery C	County Daily Water Production Summaries 2017-2018
Appendix 5	Environmental	Information Document
5.a	NEPA Categori	cal Exclusion Narrative
5.b	Мар	
5.c	Environmental	Source Documentation
5.d	Agency Consul	tations
5.e	DWSRF Catego	rical Exclusion Request Form
Appendix 6	Montgomery C	County Water/Sewer Rate Schedule
Appendix 7	Preliminary Co	st Opinions

1.0 Executive Summary

Montgomery County owns and operates a Raw Water Pump Station (RWPS) and Water Treatment Plant (WTP) located near Lake Tillery in western Mt. Gilead that provides treated water to approximately 5,760 residential and commercial connections across six municipalities.

This report focuses on the 6 MGD RWPS that was constructed in 1982 and most of its components are original to the facility. Montgomery County recently commissioned an independent assessment of the RWPS which concluded that the raw water pumps and other infrastructure vital to the operation of the RWPS are nearing the end of their useful life. The County's Asset Management Plan has slated for the replacement of the aging components critical to the operation of RWPS for Fiscal Year 2020, including replacement of the raw water pumps (RWPs), motors, valves, related appurtenances, an emergency generator, SCADA improvements and general site improvements to the facility. Due to the catastrophic consequences associated with a failure of this infrastructure, Montgomery County applied for, and received, an intent to fund from the Division of Water Infrastructure (DWI) for RWPS Improvements.

This Preliminary Engineering Report (PER) evaluates four alternatives. The alternatives considered include: "Preferred Alternative — Alternative No. 1 — RWPS Improvements with 6 MGD Replacement Pumps", "Alternative No. 2 — RWPS Improvements with 4 MGD Replacement Pumps", "Alternative No. 3 — RWPS Improvements with 6 MGD Replacement Pumps and VFDs", and "Alternative No. 4 — No Action". The "No Action" alternative promotes the growing risk of mechanical failure within the RWPS and was consequently rejected. The remaining three alternatives met criteria to address the needs and concerns of the County. Alternative No. 2 was rejected based on the projected 20-year maximum daily flow of 3.791 MGD which is 95% of the 4 MGD pump capacity. Alternative No. 3 was rejected because the marginal improvement to efficiency provided by VFDs is outweighed by the annual O&M and replacement costs of the VFDs.

Alternative No. 1 was found to address the County's needs and concerns and was selected based upon the design flow and cost analysis included in this report. This "Preferred Alternative", proposes like-for-like replacement of facility's two 6 MGD horizontal split case centrifugal pumps and motors, including replacement of check valves, butterfly valves, piping and appurtenances, replacement of the existing 300kW emergency generator and automatic transfer switch (ATS), replacement and relocation of the Motor Control Center (MCC) and miscellaneous electrical improvements, modification of the SCADA system with relocation of the existing antennae, sump pump and float replacement, installation of a sodium permanganate system, landscape bank stabilization, and modification of an access hatch to improve safety at the facility.

Alternative No. 1 is intended to positively impact the environment by reducing the risk of catastrophic failure of the sole source of potable water to Montgomery County and the six municipalities it serves. All construction activity will take place on the RWPS property. Adequate construction practices and erosion control measures will be implemented during construction to minimize any temporary construction effects to the surrounding environment.

The total project cost of the preferred alternative is \$1,357,700. This project is funded by the Division of Water Infrastructure with a State Reserve Project Grant in the amount of \$157,650 and Drinking Water State Revolving Funds Loan in the amount of \$1,200,050 with \$521,200 eligible for principal forgiveness. The grant fee and loan closing cost of \$26,400 will be paid by local funds. This project will have no impact on user fees. This proposed funding is sufficient to improve the overall operation, reliability, safety and quality of the RWPS and help ensure continued service for its current and future customers for decades to come.

2.0 Existing Facilities and Project Planning

Montgomery County owns and operates a 6 million gallons per day (6 MGD) Raw Water Pump Station (RWPS) and Water Treatment Plant (WTP) located near Lake Tillery in western Mt. Gilead. The County owns and maintains a water distribution system which serves approximately 5,760 residential and commercial connections across six municipalities. These municipalities include the Towns of Biscoe, Candor, Mt. Gilead, Robbins, Star, and Troy. The RWPS is located just west of Mt. Gilead on Hydro Road on the shoreline of Lake Tillery.

The raw water supply for the County starts at the headwaters of the Yadkin-Pee Dee River Basin located near Blowing Rock where it travels south and east across the state for 203 miles before reaching the WTP's raw water intake located near the dam at Lake Tillery. Once at Lake Tillery, the raw water station pumps water to the WTP located on Hydro Road, west of Mt. Gilead. After the water is treated, it is stored in a clearwell onsite until pumped into the distribution system. The distribution system includes a network of ten (10) storage tanks, five major booster pumping stations, and over 365 miles of pipes ranging in size from 2 inches to 24 inches.

2.1 RWPS Condition

2.1.1 General RWPS Condition

Table 2 1	1	General	RWPS	Condition
I avic 2.1		uenerar	IVVFJ	COHUIDII

Provide a brief description of the RWPS condition as discussed in Section 3.3.2.1 of the guidance.

The RWPS was constructed in 1982 (>35 years ago). Many of the components are original to the facility and reaching the end of their useful life. The raw water pumps, sump pump, motor control center, electrical supply and most appurtenances are all original. The two Aurora Split Case Centrifugal Pumps have a life expectancy of 40 years and have been rewound twice. Given the importance of the RWPS as the sole source of raw water to its service population of over 24,000 users, the consequences of failure are considered catastrophic. Record drawings of the existing RWPS facility are included in Appendix 3.

As seen in the table below, the average flows for the past two years has slightly increased. To date, there have been no issues meeting demands with regard to the sizing and capacity of the RWPS.

Provide the average day	lv f	lows	for the	nast two	years and the current flow.	
I TOVIAL LITE AVETAGE AAT	' '	1000	וטו נווכ	pustivo	years and the carrent now.	

3 ,, ,	<i>'</i>	,	
Schematic layout Reference:	Appendix 3	Supporting information Appendix	Appendix 3
		Reference:	Appendix 4

Table 2.1.1. General RWPS Condition							
Year	P	ADF (MGD)	Year		ΑI	OF (MGD)	
2014	2014 2.24					2.54	
2015 2.43			2017			2.57	
2018 Current A): 2.793						
	6.000						
Percentage of	46.55%						
Provide information related to any NOVs the RWPS may have received or any special orders that may be in place.							
NOVs			Special Orders				
Does the RWPS have any	NOVs?		Does the RWP	S have	any Spe	cial Orders	or
Yes			pending SOCs?				
⊠ No			Yes, Special Order is finalized				
N/A (new constructio	n only)		Yes, Special Order is pending				
			⊠ No				
			☐ N/A (new construction only)				
If yes, then describe and provid	de supportin	g information in an	If yes, then describe and provide supporting information in an			ı an	
appendix of the ER/EID.			appendix of the ER/E	ID.	T.		
Appendix Re	eference:	N/A	Арр	endix Re	ference:	N/A	
Does the RWPS currently	have pro	oblems meeting	Yes 🖂	No			
SDWA primary and secon	SDWA primary and secondary standards?						
If Yes, complete Table 2.1	2; If No,	proceed to Table 2	2.1.3				

2.1.2 Historical Water Demand

The following table details the historical water demands for the WTP. The figures found below were obtained from the daily water production reports provided by Montgomery County. The peak hourly demand is calculated as 2.5 times the average daily demand.

	Table 2.1.2. Historical Water Demand Data								
Provide historical flows in accordance with Section 3.3.2.2 of the guidance.									
Historical Flow Appendix Reference: Appendix 4									
	Year	Annual Average Demand (MGD)	Maximum Daily Demand (MGD)	Peak hourly Demand (including Fire flow) (MGD)					
1	2017	2.67	3.54	6.68					
2	2018	2.80	3.76	7.00					
Q2-yr: 2.74 3.65 6.84									
Provide aa	Provide additional discussion of flow variations in accordance with Section 3.3.2.2 of the guidance.								
The abov	ve data was co	mpiled from daily water p	roduction reports provided by	Montgomery County.					

Table 2.1.2. Historical Water Demand Data

The current design capacity of the WTP is 6.0 MGD. The design flows for the components that need replacement/rehabilitation were sized to handle the permitted flow. There have been no issues regarding the sizing and capacities of these components and a like-for-like capacity replacement would be sufficient to satisfy both this design flow and the current/projected demands. However, with consideration of the available storage in the system to handle any peak hourly flows and fire flow demands, the design flow for all replacements and rehabilitation components will be based on maximum daily demand.

2.1.3 Specific Equipment to be Replaced or Rehabilitated Description

The following tables provide information on the specific equipment to be replaced or rehabilitated. The sizing of all current equipment is sufficient to handle the current design flows and no increase in capacity is required for any equipment identified.

Table 2.1.3. Specific Equipment to be Replaced or Rehabilitated Description								
Raw Water Pumps #1 and #2								
Picture	Annondiy 2	Diagram	Appendix	Ad	Additional Information Appen			
Reference:	Appendix 3	Reference:	3		Reference: 3.a			
Condition Age Size								
God	od	36+ Years			4,200 GPM (6 MGD)			
Poc	or							
□ N/A								
Is this like for like replacement/no capacity increase required?								
		Additiona	al Informatio	n				

Provide any additional information that may be helpful in describing the equipment discussed above. Create additional tables for individual project components to be replaced or rehabilitated.

The raw water pumps (RWP) #1 and #2 are 4,200 GPM (6 MGD) horizontal split case centrifugal pumps. Originally installed in 1982, the pumps have already been rebuilt once and have an estimated five years of remaining life. An asset assessment conducted by *Underwood Pump* rated the probability of failure of these pumps as 50%. The pumps exhibit vibrations up to 10% over the allowable range. It is questionable whether the pump packing leakage is still within spec with some grease leakage was also detected. While the maintenance records for the raw water pumps are incomplete, the pumps have some history of failures. Given the importance of the RWPS as the sole source of raw water for its considerable service population, the consequences of failure are considered catastrophic. The Asset Assessment identified casing gasket leakage and fastener corrosion on RWP #1 & #2. RWP #1 & #2 clamps on packing gland swing bolts need replacement due to corrosion. RWP #1 & #2 base and foundation corrosion & degradation. Corrosion on RWP #2 inboard end lower casing half area beneath packing. Some casing gasket extrusion on both RWP #1 and #2. Corrosion on RWP #1 & #2 inboard/outboard end bearing clamps & outside of bearing cartridges.

Based on future water demand projections, a like-for-like replacement of the raw water pumps would be more than adequate for the 20-year planning period. An alternative including the downsizing of the raw water pumps from 6 MGD to 4 MGD is investigated below considering the tradeoffs between capacity and efficiency.

Raw Water Pump Motors #1 and #2								
Picture	Picture Appendix Diagram		Additional Information	Appendix				
Reference:	3	Reference:	Appendix 3	Reference:	3.a			
Condition	on	Age		Size	Size			
Goo	od	36+ Yea	ars	125 HP				
∑ Fair	•							
Poor								
□ N/A								
Is this like for like replacement/no capacity increase required?								
Additional Information								

Provide any additional information that may be helpful in describing the equipment discussed above. Create additional tables for individual project components to be replaced or rehabilitated.

The RWP Motors #1 and #2 are 125 HP, 1,185 RPM Frame 445T motors manufactured by US Electrical Motors. Originally installed in 1982, the motors have been rewound twice and have less than 25% remaining life. An asset assessment conducted by *Underwood Pump* rated the probability of failure of these motors as 50%. The bearings have more than 20,000 hours of usage and generally run very hot with moderate vibrations and noise. The motors also show evidence of grease leakage associated with age and wear. The base and foundation have signs of corrosion & degradation, the coupling guard bolt is missing, and voids are developing in the grout.

Based on a like-for-like replacement of the raw water pumps, a similar like-for-like replacement of the motors is sufficient for the 20-year planning period. One of the alternatives below considers the addition of variable frequency drives (VFDs) to 6 MGD pumps and motors to maximize energy efficiency and productivity.

Emergency Generator								
Picture Reference:	Appendix	Diagram Reference:	Appendix 3	Additiona	I Information Reference:	Appendix		
Reference.	3	Reference.			Reference.	3.a		
Condition Age					Size			
Good		18+ Years		300 kW				
Poor								
□ N/A	4							
Is this like for like replacement/no capacity increase required?						☐ No		

Additional Information

Provide any additional information that may be helpful in describing the equipment discussed above. Create additional tables for individual project components to be replaced or rehabilitated.

The emergency generator is a model 300ROZD, 300 kW. The emergency generator is in generally fair condition; however, the electrical access panel is rusted. The generator has an estimated remaining life of six years. Based on a like-for-like replacement of the raw water pumps and motors, a similar like-for-like replacement of the emergency generator is sufficient for the 20-year planning period.

Motor Control Center/Switchgear						
Picture Reference:	Appendix 3	Diagram Reference:	Appendix 3	Additional In	nformation Reference:	Appendix 3
Conditi	ion	Age			Size	
Goo	or	36+ Ye	ars		N/A	
Is this like for like	replacement/n	o capacity increas	e required?		∑ Ye	s No
		Additiona	I Information	<u>.</u>		
Provide any additional information that may be helpful in describing the equipment discussed above. Create additional tables for individual project components to be replaced or rehabilitated.						
The Motor Control Center (MCC) was originally installed in 1982 and is nearing its recommended useful life. The consequence of the MCC failing would be considered catastrophic as it runs the pumps/motors.						
Based on a like-for-like replacement of the raw water pumps and motors, a similar like-for-like						

2.2 Current Population

The population data presented was obtained from the US Census and Local Water Supply Plans (LWSP) for each respective system within the WTP service area. The table also provides a breakdown of the County's distribution system service area, as well as the six (6) municipalities which the WTP serves for the estimated population served in 2010.

2.2.1 Current Population Data

Table 2.2.1 Current Population Data					
Provide historical census information in accordance with So	Provide historical census information in accordance with Section 3.3.3 of the guidance				
Supporting document Appendix Reference: Appendix 4					
Census Year	Population in the Service Area				
2000	18,300				
2010	22,948				

If service area includes more than one municipality, discuss how breakdown of population data in accordance with Section 3.3.2.2 of the guidance.

The Montgomery County WTP service area includes the County's own customers and those within each of the municipalities that purchase water from the County. The breakdown of each system's service population for 2010 (US Census) and 2017 (LWSPs) is as follows:

	2010	2017
Montgomery County:	12,754	14,473
Town of Biscoe :	1,700	1,749
Town of Candor :	840	843
Town of Mt. Gilead :	1,181	1,200
Town of Robbins :	1,097	1,107
Town of Star :	876	875
Town of Troy :	4,500	4,300
WTP Service Area :	22,948	24,547

A summary of the data obtained can be found in Appendix 4. The 2017 LWSP data provides the basis for projecting population and flow demands through the planning period. A summary of each system's LWSP is included in Appendix 4.

2.3 Water Demand

The water demands presented below are the current demands for the Montgomery County water system. The year analyzed in Table 2.3.1 is 2017 to ensure actual data for the annual averages is represented. Additional data is also presented detailing the WTP service area demands and is compiled from the LWSP of each water system within the WTP service area. For a detailed breakdown of the demands for each system, see table "2017 Demands by User Type" found in Appendix 4.

2.3.1 Current Water Demand

Table 2.3.1 Current Water Demand					
Provide historical census information in accordance with Section 3.3.4 of the guidance.					
Supporting docume	ent Appendix Reference:	Appendix 4			
Montgomo	ery County				
Average Daily Demand (MGD)					
Residential Demand :	<i>d</i> : 0.466				
Commercial Demand :	Commercial Demand : 0.282				
Industrial Demand :	0.000				
Unaccounted-For :	or: 0.463				
Bulk Sales ¹ : 1.206					
Total Current Demand (2017): 2.417					

Discuss the methodology for estimating/calculating the flow breakdown and comment whether this use pattern will continue in accordance with Section 3.3.2.2 of the guidance.

With reference to Montgomery County's Water Daily Production records (Appendix 4), the maximum daily demand, as the average the two highest consecutive days of record of water treated, was found to be **3.761 MGD** and occurred in September 2018.

The breakdown of demands by user type was obtained from the 2017 LWSP for Montgomery County and can be found in **Appendix 4**. Future projections of these demands are expected to trend as a function of population. These projections are based on gpcd by user type and are discussed further in Tables 2.3.2 and 2.3.3.

Notes: ¹ – Bulk sales account for the remaining demand of the service area. In order to further project the estimated flows for these water systems, an evaluation of historical population and flow demand by user type is required. The service area population for each of these systems is presented in Table 2.2.1. The flow demands by user type for these systems is shown in the table below:

Table 2.3.1 Current Water Demand							
	Residential (MGD)	Commercial (MGD)	Industrial (MGD)	Institutional (MGD)	Unaccounted (MGD)	Total (MGD)	
Montgomery County:	0.466	0.282	0.000	0.000	0.463	1.211	
Town of Biscoe :	0.160	0.060	0.090	0.010	0.020	0.340	
Town of Candor :	0.039	0.013	0.057	0.003	0.011	0.123	
Town of Mt. Gilead :	0.072	0.000	0.000	0.000	0.036	0.108	
Town of Robbins :	0.093	0.014	0.005	0.008	0.027	0.147	
Town of Star :	0.020	0.011	0.05	0.013	0.010	0.059	
Town of Troy :	0.260	0.044	0.060	0.010	0.055	0.429	
WTP Service Area :	1.110	0.424	0.217	0.044	0.622	2.417	

2.3.2 Population and Flow Projections

The following table provides the breakdown of the projected population through the 20-year planning period for the Montgomery County WTP service area beginning in 2018. Additionally, a breakdown of each water system within the service area is provided as further information. **Appendix 4** contains the detailed analysis of each system with regards to population and flow projections.

Table 2.3.2 Population and Flow Projections					
Project Service Area Population and residential demands for the next 20 years in accordance with Section 3.4.1 of the guidance.					
Supporting document Appendix Reference: Appendix 4					
Year	'ear Service area				
	Population				
Current Year (2018)	24,936	1.137			
Year 5	26,099	1.197			
Year 10	27,062	1.239			
Year 15 28,009 1.280					
Year 20	28,944	1.321			

State Assumptions and discuss methodology used for population projections. Provide percentage growth per year and justify that using U.S. Census data or data from state Data center (SDC). If alternate population growth rate is used, you must compare it with SDC projections and justify the alternate growth rate.

The methodology to determine the future residential demands included breaking out each respective system by population and user type demand for the County and six municipalities. The population projections for each system were based on the 2017 LWSP planning projections. The population for each unique year of the planning period was then calculated by interpolating linearly between the known planning projections (10-year increments) using the least squares method. The population for the WTP service for each year was found by simply adding each system's population together. The corresponding residential demand was then calculated using the projected population and a fixed per capita day multiplier. The gallons per capita day for each system was based on the 2017 average daily residential demand and the 2017 water system population as reported in each system's respective

Table 2.3.2 Population and Flow Projections

LWSP. A detailed evaluation for each year in the planning period can found in Appendix 4.

The following is a breakdown of each water system's future residential demand in MGD:

	Population	County	Biscoe	Candor	Mt. Gilead	Robbins	Star	Troy	Total
Current Year (2018):	24,936	0.480	0.171	0.039	0.073	0.094	0.020	0.260	1.137
Year 5 :	26,099	0.504	0.199	0.039	0.076	0.097	0.020	0.262	1.197
Year 10 :	27,062	0.528	0.209	0.039	0.077	0.100	0.021	0.265	1.239
Year 15 :	28,009	0.551	0.221	0.039	0.079	0.102	0.021	0.266	1.280
Year 20 :	28,944	0.575	0.234	0.039	0.081	0.104	0.021	0.266	1.321

2.3.3 Water Demand Projections

Table 2.3.3 Design Flow Analysis						
Project Service Area Population and residential dema	nds for the next 20 years in accordance w	ith Section 3.4.1 of the guidance.				
Supporting	document Appendix Reference	e: Appendix 4				
Year Design Flow(Year 20) % change from the current Flow						
Residential Flow	sidential Flow 0.575 23.4%					
Commercial Flow 0.348 23.4%						
Industrial 0.000 0.0%						
Unaccounted-For 0.387 -16.3%						
Bulk Sales 1.429 18.5%						
Total 2.739 14.8%						

If design demand is based on a flow other than Year 20 flows, you must provide a justification.

A breakdown of each water system and explanation of how the bulk sale flows are calculated can be found in the worksheets in **Appendix 4**.

The scope of this project is for the rehabilitation/replacement of the raw water pump station. The consideration for the 20-year demand is applicable for the estimated total present worth of annual O&M through the life of the project. The sizing of associated pumps is based on the consideration of an expected operating range. This range was determined based on the estimated 20-year average daily design flow, the contractually obligated flow volume to the purchasing systems, and a maximum daily design flow.

The estimated 20-year average daily design flow is presented above – 2.739 MGD. The contractually obligated flow volumes to the purchasing systems are as follow: Town of Biscoe 0.900 MGD; Town of Candor 0.170 MGD, Town of Mt. Gilead 0.200 MGD; Town of Robbins 0.250 MGD; Town of Troy 0.600 MGD; Town of Star 0.113 MGD. The total maximum daily bulk sale flow considered is the sum of these contracts (2.233 MGD). The estimated bulk sale flow at the end of the design period is 1.429 MGD, or

Table 2.3.3 Design Flow Analysis

64% of the maximum obligated daily flow.

With the maximum obligated flow (2.233 MGD) and the Montgomery County projected 20-year demand (1.31 MGD), the total average demand in 20 years is **3.543 MGD**.

An alternate method is similarly used to determine the maximum daily flow using Montgomery County's *Water Daily Production* averages for 2018 (Appendix 4) whereby a peaking factor is determined. Using this source, the 2018 maximum daily flow (3.799 MGD) is divided by the average daily flow (2.793 MGD) to arrive at a peaking factor of 1.36. The projected 20-year maximum daily flow from Table 2.3.3 (2.739 MGD) is then multiplied by the peaking factor (1.36), providing a station demand of **3.725 MGD**.

The conclusion of the Design Flow Analysis is that a 4 MGD pump replacement could be considered as a project alternative in addition to like-for-like replacement, i.e., a 6 MGD pump replacement.

3.0 Purpose and Need

3.1 Need for the Project

The need for this project is precipitated by the aging infrastructure at the RWPS. The RWPS is vital to normal operation of the WTP and requires rehabilitation or replacement for continued service. A RWPS rehabilitation project has been prioritized in the Montgomery County Capital Improvements Plan and is considered to be one of the most critical needs in the system for maintaining the public health and safety, and continuity of service.

Table 3.1 Need for the Project						
Project is driven by (check all tha	at Apply):					
Public Health 🔀	Aging Infrastructure	\boxtimes	System Management Issues			
Does the project accommodate Future Growth? Yes No						
•	ssociated with growt	h (capacity in	crease) should not be more than 30%			
of total project cost.						
Provide a detailed statement of purpose and need of the project based on the above listed, or any other important factors.						
Supporting Appendix Reference: Appendix 3						

The Raw Water Pump Station (RWPS) was constructed in 1982 along with the County Water Treatment Facility. Montgomery County recently completed an Asset Management Plan (AMP) which identified that the pumps were nearing the end of their useful life. The County was aware that the pumps would soon need replacing, but through this AMP process this was confirmed and has shown to be one of the most critical parts of the County Water System. In 2015, the County replaced the intake structures, vacuum prime system and other site improvements, however, the improvements proposed in this project were not improved in the 2015 project.

The raw water pumps (RWPs) and RWP motors were originally installed in 1982. The RWPs have already been rebuilt once and have an estimated five years of remaining life. The RWP motors have been rewound twice and have less than 25% remaining life. An independent asset assessment determined that both the pumps and motors had a probability of failure of 50%. The RWPs are slated for replacement in the fiscal year of 2020 in the County's CIP. Given the importance of the RWPS as the sole source of raw water for its considerable service population, the consequences of failure are considered catastrophic. Thus, there is a vital need to replace the RWPs and RWP motors.

The Motor Control Center (MCC) was also originally installed in 1982 and is nearing its recommended useful life. The MCC is slated for replacement in the fiscal year of 2020 in the County's CIP. The consequence of the MCC failing would be considered catastrophic as it runs the motors/pumps and needs to be replaced.

The SCADA modifications are needed to provide additional information on system performance such as pump discharge pressure, suction pressure alarm, check valve limit switches and sump pump activity. The antenna needs to be relocated to improve the signal transfer. The associated electrical conduit also

requires improvements due to a missing weather head on the power pole. Miscellaneous electrical needs include the installation of a weather head. The SCADA modifications are slated for fiscal year 2020 in the County's CIP.

A dedicated generator is necessary at the RWPS in order to ensure the continuous operation of the system during power outages. The existing emergency generator and automatic transfer switch (ATS) have an estimated remaining life of six years and are generally in fair condition; however, the electrical access panel is rusted and the labeling and instructions on the indicator lights and controls are faded and illegible in some areas. The generator and ATS are slated for replacement in the fiscal year of 2020 in the County's CIP. Due to the high cost of replacement and catastrophic consequences associated with failure, the replacement of the emergency generator and ATS is included in this project.

The County has also identified a need to improve odor and taste of the water by removing iron and magnesium prior to treatment at the WTP. While iron and magnesium are secondary contaminants, their removal will improve water taste and odor, which would be beneficial to the County. The project then also includes the installation of a sodium permanganate system to oxidize iron and magnesium in order to improve water quality and assist with taste and odor.

The County is concerned with safety regarding the access to the lower level of the facility where the pumps and motors are located. The access is now through a hatch in the floor which does not provide suitable headroom when descending/ascending the steep ship ladder-style steps. The County staff should access the pump room at least 2 times a week, therefore, the County desires to make this access safer for their employees by widening the access hatch.

The sump pump and float are in fair condition with moderate consequences of failure. The reliability of the sump level alarm is questionable due to its deteriorating condition. The sump pump and float have surpassed their expected life and should to be replaced at this time.

Finally, there are general site improvements needed to stabilize steep embankments on either side of the RWPS. Erosion control efforts from the 2015 project were unsuccessful where slope erosion has continued to dominate the embankments. Vegetation is also intruding on the security fence and other areas within the property that needs to be removed.

The primary purpose of the project is to replace the aged equipment at the facility and shore up the needs for general site improvements as identified above. As part of this project, the County will replace two (2) horizontal split case pumps, two (2) motors, one (1) MCC, valves and piping associated with each pump, generator and ATS, sump pump and float, as well as make general site improvements, including modification of the SCADA system and relocation of the antenna, landscape bank stabilization, and safety improvements to access to the lower level of the pump room.

The project will not provide any expanded capacity to the WTP.

4.0 Alternatives Analysis

The following alternatives analysis details the four (4) alternatives evaluated against the needs of the Raw Water Pump Station (RWPS). The alternatives considered include: "Preferred Alternative – Alternative No. 1 – RWPS Improvements with 6 MGD Replacement Pumps", "Alternative No. 2 – RWPS Improvements with 4 MGD Replacement Pumps", "Alternative No. 3 – RWPS Improvements with 6 MGD Replacement Pumps and VFDs", and "Alternative No. 4 – No Action". With the exception of the "No Action" alternative, the three pump replacement alternatives differ only in the in the size and/or type of raw water pumps used to replace the existing pumps. That is to say, all other equipment replacements/upgrades and site improvements are identical for these alternatives and for the sake of brevity are discussed upfront in Section 4.0. In addition to the pump replacements, the three alternatives include:

- Replacement of check valves, butterfly valves, piping and appurtenances associated with pumps replacements;
- Replacement of 300 kW emergency generator and automatic transfer switch;
- Replacement of Motor Control Center (MCC) and miscellaneous electrical;
- Modification of SCADA system and relocation of antennae;
- Replacement of sump pump and float;
- Installation of a sodium permanganate system;
- Landscape bank stabilization;
- Modification of access hatch to pump station lower level.

4.1 Preferred Alternative – Alternative No. 1 – RWPS Improvements with 6 MGD Replacement Pumps

Table 4.1. RWPS Improvements with 6 MGD Replacement Pumps Preferred Alternative Alternative No. 1

Provide a description of the above alternative in accordance with Sections 3.6.1.1 through 3.6.1.8 of the guidance.

Supporting Information Appendix Reference: | Appendix 7

Description

Construct two (2) 6 MGD pumps with new motors in the two vacant spots within the lower level of the Montgomery County Raw Water Pump Station property and then remove the existing two (2) 6 MGD pumps. In addition to pump and motor replacements, the project includes:

- Replacement of check valves, butterfly valves, piping and appurtenances associated with pumps replacements;
- Replacement of 300 kW emergency generator and automatic transfer switch;
- Replacement of Motor Control Center (MCC) and miscellaneous electrical;
- Modification of SCADA system and relocation of antennae;
- Replacement of sump pump and float;
- Installation of a sodium permanganate system;
- Landscape bank stabilization;
- Modification of access hatch to pump station lower level.

Table 4.1. RWPS Improveme	nts with 6 MGD Replacement Pumps
Is Figure Included? Xes No	If Yes, Figure #: Figure 3, Appendix 2
Alternative Feasibility: Feasible	Infeasible
Capital Cost: \$1,357,700	Present Worth: \$4,274,428
Environment	al Impact Description
Provide a <u>qualitative</u> description of the environmental impo	acts and compare the impacts to that of the Preferred Alternative.
•	nvironmental impact by reducing the risk of catastrophic ontgomery County and the six municipalities it serves.
environment. Operation of construction machin	RWPS property with minimal impact to the surrounding nery will create additional noise at the RWPS along with luring the construction operations. These impacts will be o extended or cumulative impacts will exist.
and erosion control plan will protect the a	erosion. Design and implementation of a sedimentation reas adjacent to the site during construction. Upon illization of the sloped embankments, erosion control
Environme	ntal Impact Analysis
☐ Greater than Preferred Alternative☐ Less than Preferred Alternative☒ Same as Preferred Alternative	
Accept	ance/Rejection
	ected
<u> </u>	Acceptance/Rejection
Discuss the rationale for acceptance/rejection of the above	referenced alternative.
at the RWPS to ensure the reliable production o	mery County to improve and replace aging infrastructure fraw water for the County's WTP. The project will and quality of the RWPS and help ensure continued decades to come.
the projected 20-year maximum daily flow, Alter	Flow Analysis: while each feasible alternative satisfies rnatives No. 1 (preferred) and No. 3 can accommodate nted for in the methodology of Section 2.3.3 due to
•	tal present worth and estimated annual O&M costs. I ginal efficiency gained using VFDs is outweighed by the

Table 4.1. RWPS Improvements with 6 MGD Replacement Pumps

It is noted that the capital cost of Alternative No. 1 is within the project budget; however, due to the high present worth cost, the sodium permanganate system will be evaluated further in design. A water quality evaluation will be needed to verify the dosing assumptions and that the added measure will not be cost prohibitive.

4.1.1 Preferred Alternative – Alternative No. 1 – Capital Costs

Table 4.1.1. Capital Costs Raw Water Pump Station Improvements Montgomery County

Complete the areas shown in gray below. Where shown, use pulldown menu to select options. The spreadsheet will calculate the capital costs.

	RWPS Improvements with 6 MGD Replacement Pumps					
Project Administration (\$):	\$219,000					
Component	Unit Cost ^a	Unit	Quantity	Total Cost		
Mobilization (3% of Construction Cost)	\$30,200	LS	1	\$30,200		
6 MGD Pump Replacement	\$90,000	EA	2	\$180,000		
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$115,000		
300kW Generator and ATS Replacement	\$150,000	EA	1	\$150,000		
MCC Replacement	\$175,000	EA	1	\$175,000		
SCADA Improvements	\$75,000	LS	1	\$75,000		
Sump Pump and Float Replacement	\$5,000	LS	1	\$5,000		
Sodium Permanganate System	\$75,000	LS	1	\$75,000		
Landscape Bank Stabilization	\$50,000	LS	1	\$50,000		
Lower Level Access Hatch	\$20,000	LS	1	\$20,000		
Electrical Improvements	\$100,000	LS	1	\$100,000		
Bypass Pumping	\$45,000	LS	1	\$45,000		
Erosion Control	\$15,000	LS	1	\$15,000		

^aUnit costs are in today's dollars, not future dollars.

Total Construction Cost:	\$1,035,200
Construction Contingency Cost:	\$103,500
Project Administration Cost:	\$219,000
Total Capital Cost:	\$1,357,700

4.1.2 Preferred Alternative – Alternative No. 1 – Project Cost Life Cycle Assumptions

Table 4.1.2. Project Cost Life Cycle Assumptions Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps

Complete the areas shown in gray.

complete the areas shown in gray.	Expected Life	Replacement	
Component	Cycle	Expected?†	Rationale for Expected Life Cycle
Mobilization (3% of Construction Cost)	N/A	N/A	One time incidental cost
			Pumps are expected to last 40 years,
6 MGD Pump Replacement			however the motors are expected to last 20
WGD Pump Replacement			years, therefore partial replacement cost is
	20-40 years	Yes	expected
Piping, Valves, and Appurtenances	40 years	No	Expected to last a minimum of 40 years
300kW Generator and ATS Replacement	25 years	No	Expected to last 25 years per AMP
MCC Replacement	50 years	No	Expected to last 50 years per AMP
SCADA Improvements	50 years	No	Expected to last 50 years per AMP
Sump Pump and Float Replacement			Historically requiring replacement every 2
Sump rump and Float Replacement	2 years	Yes	years at this station
Sodium Permanganate System	25 years	No	Expected to last 25 years
			One time cost. Correct stabilization should
Landscape Bank Stabilization			last as long as the ground remains
	N/A	No	undisturbed.
Lower Level Access Hatch	50 years	No	Expected to last 50 years or longer
Electrical Improvements	50 years	No	Expected to last 50 years
Bypass Pumping	6 months	No	Temporary Construction Measure
Erosion Control	2 years	No	Temporary Construction Measure

[†]Period for replacement would be Years 1 through 20 only.

4.1.3 Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 1 to 5)

Table 4.1.3. Replacement Costs (Years 1 to 5) Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

				Pr	esent Value o	f Replacemer	nt Costs in Yea	ır:
Component	Unit Cost	Unit	Quantity	1	2	3	4	5
Mobilization (3% of Construction Cost)	\$30,200	LS	1	\$0	\$0	\$0	\$0	\$0
6 MGD Pump Replacement	\$90,000	EA	2	\$0	\$0	\$0	\$0	\$0
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Sump Pump and Float Replacement	\$5,000	LS	1	\$0	\$4,820	\$0	\$4,647	\$0
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0
Total Present \	alue of Replace	ment Costs	(Years 1 to 5):	\$0	\$4,820	\$0	\$4,647	\$0

4.1.4 Preferred Alternative – Alternative No. 1 – Replacement Costs (Years 6 to 10)

Table 4.1.4. Replacement Costs (Years 6 to 10) Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

Current Inflation Rate based on Construction Cos	st index: 2.97%		EPA D	iscount Rate:				
				Pro	esent Value o	f Replacemer	nt Costs in Yea	r:
Component	Unit Cost	Unit	Quantity	6	7	8	9	10
Mobilization (3% of Construction Cost)	\$30,200	LS	1	\$0	\$0	\$0	\$0	\$0
6 MGD Pump Replacement	\$90,000	EA	2	\$0	\$0	\$0	\$0	\$0
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Sump Pump and Float Replacement	\$5,000	LS	1	\$4,480	\$0	\$4,319	\$0	\$4,164
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0
Total Pres	ent Value of Replacen	nent Costs (\	Years 6 to 10):	\$4,480	\$0	\$4,319	\$0	\$4,164

TWC No. 3288-K

4.1.5 Preferred Alternative – Alternative No. 1 – Replacement Costs (Year 11 to 15)

Table 4.1.5. Replacement Costs (Years 11 to 15) Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

Current initiation Nate based on Construction Cos	4.073/0							
				Pre	esent Value o	f Replacemen	t Costs in Yea	r:
Component	Unit Cost	Unit	Quantity	11	12	13	14	15
Mobilization (3% of Construction Cost)	\$30,200	LS	1	\$0	\$0	\$0	\$0	\$0
6 MGD Pump Replacement	\$90,000	EA	2	\$0	\$0	\$0	\$0	\$0
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Sump Pump and Float Replacement	\$5,000	LS	1	\$0	\$4,014	\$0	\$3,870	\$0
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0
Total Prese	Total Present Value of Replacement Costs (Years 11 to 15):						\$3,870	\$0

4.1.6 Preferred Alternative – Alternative No. 1 – Replacement Costs (Year 16 to 20)

Table 4.1.6. Replacement Costs (Years 16 to 20) Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

				Pr	esent Value o	f Replacemer	nt Costs in Yea	ır:
Component	Unit Cost	Unit	Quantity	16	17	18	19	20
Mobilization (3% of Construction Cost)	\$30,200	LS	1	\$0	\$0	\$0	\$0	\$0
6 MGD Pump Replacement	\$90,000	EA	2	\$0	\$0	\$0	\$0	\$0
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Sump Pump and Float Replacement	\$5,000	LS	1	\$3,731	\$0	\$3,597	\$0	\$3,467
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0
Total Preser	nt Value of Replacem	ent Costs (Y	ears 16 to 20):	\$3,731	\$0	\$3,597	\$0	\$3,467

Total Present Value of Replacement Costs (Life of Project): \$41,109

4.1.7 Preferred Alternative – Alternative No. 1 – Present Value of Operations and Maintenance Costs (Year 1 to 10)

	Table 4.1	.7. Present	Value of Op w Water P				sts (Years	1-10)					
Montgomery County													
		RWPS Imp	provement	s with 6 M	GD Replac	ement Pu	mps						
Complete the cells shown in gray below.													
Current Inflation Rate Based on Municipal Cost Index:	0.09%										EPA Disc	ount Rate:	4.875%
							Present '	Value of O	&M Costs	for Year:			
Component	Unit Cost	Unit	Quantity	1	2	3	4	5	6	7	8	9	10
Electricity Demand for 6 MGD pumps (Total kWh/yr)	\$43,500	Year	1	\$41,514	\$39,618	\$37,809	\$36,083	\$34,436	\$32,863	\$31,363	\$29,931	\$28,564	\$27,260
Sodium Permanganate Solution (Total gal/yr)	\$180,000	Year	1	\$171,781	\$163,938	\$156,453	\$149,309	\$142,492	\$135,986	\$129,777	\$123,851	\$118,196	\$112,800
Sodium Permanganate System Maintenance	\$1,500	Year	1	\$1,432	\$1,366	\$1,304	\$1,244	\$1,187	\$1,133	\$1,081	\$1,032	\$985	\$940
Total Present Value of	Yearly O&M	Expenses (Y	ears 1-10):	\$214,727	\$204,922	\$195,566	\$186,637	\$178,115	\$169,982	\$162,221	\$154,814	\$147,746	\$141,000

4.1.8 Preferred Alternative – Alternative No. 1 – Present Value of Operations and Maintenance Costs (Year 11 to 20)

	Table 4.	1.8. Present R	aw Water	Pump Stat	ion Impro		osts (Years	11-20)					
			М	ontgomer	y County								
		RWPS In	nprovemer	nts with 6 I	MGD Repla	acement P	umps						
Current Inflation Rate Based on Municipal Cost Index:	0.09%										EPA Disco	ount Rate:	4.875%
Present Value of O&M Costs for Year:													
Component	Unit Cost	Unit	Quantity	11	12	13	14	15	16	17	18	19	20
Electricity Demand for 6 MGD pumps (Total kWh/yr)	\$43,500	Year	1	\$26,015	\$24,827	\$23,694	\$22,612	\$21,580	\$20,594	\$19,654	\$18,757	\$17,900	\$17,083
Sodium Permanganate Solution (Total gal/yr)	\$180,000	Year	1	\$107,649	\$102,734	\$98,043	\$93,567	\$89,295	\$85,218	\$81,327	\$77,613	\$74,070	\$70,688
Sodium Permanganate System Maintenance	\$1,500	Year	1	\$897	\$856	\$817	\$780	\$744	\$710	\$678	\$647	\$617	\$589
Total Present Value of Y	early O&M E	xpenses (Ye	ars 11-20):	\$134,562	\$128,418	\$122,554	\$116,959	\$111,618	\$106,522	\$101,658	\$97,017	\$92,587	\$88,360
					•		Total Pre	sent Valu	e of Annua	al O&M Co	sts (Life of	Project):	\$2,855,984

4.1.9 Preferred Alternative – Alternative No. 1 – Present Value of Intermittent Operations and Maintenance Costs (Year 1 to 10)

Tab	le 4.1.9. Prese		Intermittent C	•			Costs (Ye	ars 1-10)					
Montgomery County													
		RWPS Impro	vements with	6 MGD Re	placeme	nt Pumps	3						
Current Inflation Rate Based on Municipal Cost Index:	0.09%										EPA Disco	unt Rate:	4.875%
							Present V	alue of O	&M Costs	for Year:			
Component	Unit Cost	Unit	Quantity	1	2	3	4	5	6	7	8	9	10
125 HP Motor Replacement	\$25,000	Ea	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Total Present Value of Intermittent Oper	ations & Maint	tenace Costs	(Years 1-10):	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0

4.1.10 Preferred Alternative – Alternative No. 1 – Present Value of Intermittent Operations and Maintenance Costs (Year 11 to 20)

	Table 4.1.10. Preser	nt Value of	Intermittent O	perations	and Mai	ntenance	Costs (Ye	ars 11-20)					
Raw Water Pump Station Improvements													
	Montgomery County												
	F	RWPS Impro	ovements with	6 MGD Re	eplaceme	nt Pumps							
Current Inflation Rate Based on Municipal Cost I	ndex: 0.09%									l	EPA Discou	ınt Rate:	4.875%
						ı	resent V	alue of O	&M Costs	for Year:			
Component	Unit Cost	Unit	Quantity	11	12	13	14	15	16	17	18	19	20
125 HP Motor Replacement	\$25,000	Ea	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$19,635
Total Present Value of Intermittent C	perations & Mainte	nace Costs	(Years 11-20):	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$19,635

Total Present Value of Intermittent Operations & Maintenance Costs (Life of Project): \$19,635

4.2 Alternative No. 2 – RWPS Improvements with 4 MGD Replacement Pumps

Table 4.2. RWPS Improvement	nts with 4 MGD Rep	placement Pumps
Alter	native No. 2	
Provide a description of the above alternative in accordance	e with Sections 3.6.1.1 thro	ough 3.6.1.8 of the guidance.
Supporting Information A	Appendix Reference:	Appendix 7
D ₁	escription	
Construct two (2) 4 MGD pumps with new motor Montgomery County Raw Water Pump Station pumps. In addition to pump and motor replacem Replacement of check valves, butterfly water replacements; Replacement of 300 kW emergency general Replacement of Motor Control Center (I) Modification of SCADA system and relocation of sump pump and float; Installation of a sodium permanganate standscape bank stabilization; Modification of access hatch to pump station	property and then renents, the project included valves, piping and appreciator and automatic MCC) and miscellaneous cation of antennae;	emove the existing two (2) 6 MGD udes: purtenances associated with pumps c transfer switch;
Is Figure Included? X Yes No	If Yes, Figure #: Figu	ure 4, Appendix 2
Alternative Feasibility: X Feasible	Infeasible	
Capital Cost: \$1,339,600	Present Worth:	\$3,300,407
Environment	al Impact Description	1
Provide a <u>qualitative</u> description of the environmental impa	cts and compare the impa	acts to that of the Preferred Alternative.
This alternative is intended to have a positive er failure of the sole source of potable water to Model All construction activity will take place on the Fenvironment. Operation of construction machine exhaust fumes and potentially generating dust detemporary and once construction is complete, not Landscape bank stabilization will reduce slope eand erosion control plan will protect the areas and the project and adequate stabilization of the removed.	ontgomery County and RWPS property with a lery will create additional additional and the construction of extended or cumulaterosion. Design and indicate the site during the county and the site during the site during the site during and the site d	d the six municipalities it serves. minimal impact to the surrounding fonal noise at the RWPS along with an operations. These impacts will be ative impacts will exist. mplementation of a sedimentation tring stabilization. Upon completion

Table 4.2. RWPS Improvements with 4 MGD Replacement Pumps
Environmental Impact Analysis
Greater than Preferred Alternative
Less than Preferred Alternative
Same as Preferred Alternative
Acceptance/Rejection
Alternative: Accepted Rejected
Rationale for Acceptance/Rejection
Discuss the rationale for acceptance/rejection of the above-referenced alternative.
This alternative addresses the needs of Montgomery County to improve and replace aging infrastructure at the RWPS to ensure the reliable production of raw water for the County's WTP. This alternative is only rejected, however, based on the projected 20-year maximum daily flow of 3.791 MGD which is 95% of the 4 MGD pump capacity. If future flows exceed the projections, new raw pumps would need to be installed to increase capacity. As the new raw water pumps have a life expectancy of 40 years, this alternative was not selected.

4.2.1 Alternative No. 2 – Capital Costs

Table 4.2.1. Capital Costs								
Raw Water Pump Station Improvements								
Montgomery County								
Complete the areas shown in gray below. Where shown, use pulldown menus to select options. The spreadsheet will calculate the capital								
Alternative:	ive: RWPS Improvements with 4 MGD Replacement Pumps							
Project Administration (\$):	\$219,000							
Component	Unit Cost ^a	Unit	Quantity	Total Cost				
Mobilization (3% of Construction Cost)	\$29,700	LS	1	\$29,700				
4 MGD Pump Replacement	\$82,000	EA	2	\$164,000				
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$115,000				
300kW Generator and ATS Replacement	\$150,000	EA	1	\$150,000				
MCC Replacement	\$175,000	EA	1	\$175,000				
SCADA Improvements	\$75,000	LS	1	\$75,000				
Sump Pump and Float Replacement	\$5,000	LS	1	\$5,000				
Sodium Permanganate System	\$75,000	LS	1	\$75,000				
Landscape Bank Stabilization	\$50,000	LS	1	\$50,000				
Lower Level Access Hatch	\$20,000	LS	1	\$20,000				
Electrical Improvements	\$100,000	LS	1	\$100,000				
Bypass Pumping	\$45,000	LS	1	\$45,000				
Erosion Control	\$15,000	LS	1	\$15,000				
^a Unit costs are in today's dollars, not future dollars.	Total Con	\$1,018,700						
Construction Contingency Cost:				\$101,900				
	\$219,000							
	\$1,339,600							

4.2.2 Alternative No. 2 – Project Cost Life Cycle Assumptions

Table 4.2.2. Project Cost Life Cycle Assumptions Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 4 MGD Replacement Pumps

Complete the areas shown in gray.

complete the areas shown in gray.			
	Expected Life	Replacement	
Component	Cycle	Expected?†	Rationale for Expected Life Cycle
Mobilization (3% of Construction Cost)	N/A	N/A	One time incidental cost
			Pumps are expected to last 40 years,
4 MCD Duma Dania coment			however the motors are expected to last 20
4 MGD Pump Replacement			years, therefore partial replacement cost is
	20-40 years	Yes	expected
Piping, Valves, and Appurtenances	40 years	No	Expected to last a minimum of 40 years
300kW Generator and ATS Replacement	25 years	No	Expected to last 25 years per AMP
MCC Replacement	50 years	No	Expected to last 50 years per AMP
SCADA Improvements	50 years	No	Expected to last 50 years per AMP
Sump Pump and Float Replacement			Historically requiring replacement every 2
Sump rump and rioat Replacement	2 years	No Expected to last 25 year No Expected to last 50 year No Expected to last 50 year Historically requiring re Yes years at this station No Expected to last 25 year One time cost. Correct states	years at this station
Sodium Permanganate System	25 years	No	Expected to last 25 years
			One time cost. Correct stabilization should
Landscape Bank Stabilization			last as long as the ground remains
	N/A	No	undisturbed.
Lower Level Access Hatch	50 years	No	Expected to last 50 years or longer
Electrical Improvements	50 years	No	Expected to last 50 years
Bypass Pumping	6 months	No	Temporary Construction Measure
Erosion Control	2 years	No	Temporary Construction Measure

[†]Period for replacement would be Years 1 through 20 only.

4.2.3 Alternative No. 2 – Replacement Costs (Years 1 to 5)

Table 4.2.3. Replacement Costs (Years 1 to 5) **Raw Water Pump Station Improvements Montgomery County**

RWPS Improvements with 4 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

				Present Value of Replacement Costs in Year:				ar:
Component	Unit Cost	Unit	Quantity	1	2	3	4	5
Mobilization (3% of Construction Cost)	\$29,700	LS	1	\$0	\$0	\$0	\$0	\$0
4 MGD Pump Replacement	\$82,000	EA	2	\$0	\$0	\$0	\$0	\$0
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Sump Pump and Float Replacement	\$5,000	LS	1	\$0	\$4,820	\$0	\$4,647	\$0
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0
Total Present Value of Replacement Costs (Years 1 to 5):			\$0	\$4.820	ŚO	\$4,647	\$0	

Total Present Value of Replacement Costs (Years 1 to 5):

4.2.4 Alternative No. 2 – Replacement Costs (Years 6 to 10)

Table 4.2.4. Replacement Costs (Years 6 to 10) **Raw Water Pump Station Improvements Montgomery County**

RWPS Improvements with 4 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

			Present Value of Replacement Costs in Year:					
Component	Unit Cost	Unit	Quantity	6	7	8	9	10
Mobilization (3% of Construction Cost)	\$29,700	LS	1	\$0	\$0	\$0	\$0	\$0
4 MGD Pump Replacement	\$82,000	EA	2	\$0	\$0	\$0	\$0	\$0
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Sump Pump and Float Replacement	\$5,000	LS	1	\$4,480	\$0	\$4,319	\$0	\$4,164
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0
Total Prese	ent Value of Replacer	nent Costs (Y	ears 6 to 10):	\$4,480	ŚO	\$4.319	\$0	\$4.164

4.2.5 Alternative No. 2 – Replacement Costs (Year 11 to 15)

Table 4.2.5. Replacement Costs (Years 11 to 15) Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 4 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

Current initiation rate based on construction cost i	Huex. 2.37/0	T	Discount Nate. 4.073/8						
				Pr	esent Value o	f Replacemer	nt Costs in Yea	r:	
Component	Unit Cost	Unit	Quantity	11	12	13	14	15	
Mobilization (3% of Construction Cost)	\$29,700	LS	1	\$0	\$0	\$0	\$0	\$0	
4 MGD Pump Replacement	\$82,000	EA	2	\$0	\$0	\$0	\$0	\$0	
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0	
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0	
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0	
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Sump Pump and Float Replacement	\$5,000	LS	1	\$0	\$4,014	\$0	\$3,870	\$0	
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Total Present Value of Replacement Costs (Years 11 to 15):					\$4,014	\$0	\$3,870	\$0	

4.2.6 Alternative No. 2 – Replacement Costs (Year 16 to 20)

Table 4.2.6. Replacement Costs (Years 16 to 20) Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 4 MGD Replacement Pumps

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

Current initiation Nate based on Constituction Cost i	Idex. 2.3776	LIAD	1 Discoult Nate. 4.873/6						
				Pre	esent Value o	f Replacemer	nt Costs in Yea	ır:	
Component	Unit Cost	Unit	Quantity	16	17	18	19	20	
Mobilization (3% of Construction Cost)	\$29,700	LS	1	\$0	\$0	\$0	\$0	\$0	
4 MGD Pump Replacement	\$82,000	EA	2	\$0	\$0	\$0	\$0	\$0	
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0	
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0	
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0	
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Sump Pump and Float Replacement	\$5,000	LS	1	\$3,731	\$0	\$3,597	\$0	\$3,467	
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0	
Total Present Value of Replacment Costs (Years 16 to 20):					\$0	\$3,597	\$0	\$3,467	

Total Present Value of Replacement Costs (Life of Project): \$41,109

4.2.7 Alternative No. 2 – Present Value of Operations and Maintenance Costs (Year 1 to 10)

	Table 4.2.7. Present Value of Operations and Maintenance Costs (Years 1-10)												
		Ra	w Water Pi	ump Statio	on Improv	ements							
Montgomery County													
RWPS Improvements with 4 MGD Replacement Pumps													
Complete the cells shown in gray below.													
Current Inflation Rate Based on Municipal Cost Index: 0.09% EPA Discount Rate: 4.87											4.875%		
							Present \	/alue of O	&M Costs	for Year:			
Component	Unit Cost	Unit	Quantity	1	2	3	4	5	6	7	8	9	10
Electricity Demand for 4 MGD pumps (Total kWh/yr)	\$28,500	Year	1	\$27,199	\$25,957	\$24,772	\$23,641	\$22,561	\$21,531	\$20,548	\$19,610	\$18,714	\$17,860
Sodium Permanganate Solution (Total gal/yr)	\$120,000	Year	1	\$114,521	\$109,292	\$104,302	\$99,539	\$94,995	\$90,657	\$86,518	\$82,568	\$78,798	\$75,200
Sodium Permanganate System Maintenance	\$1,500	Year	1	\$1,432	\$1,366	\$1,304	\$1,244	\$1,187	\$1,133	\$1,081	\$1,032	\$985	\$940
Total Present Value of Yearly O&M Expenses (Years 1-10): \$143,151 \$136,615 \$130,377 \$124,424 \$118,743 \$113,322 \$108,147 \$103,20									\$103,209	\$98,497	\$94,000		

4.2.8 Alternative No. 2 – Present Value of Operations and Maintenance Costs (Year 11 to 20)

Table 4.2.8. Present Value of Operations and Maintenance Costs (Years 11-20) Raw Water Pump Station Improvements Montgomery County													
RWPS Improvements with 4 MGD Replacement Pumps													
Current Inflation Rate Based on Municipal Cost Index: 0.09% EPA Discount Rate:												4.875%	
				Present Value of O&M Costs for Year:									
Component	Unit Cost	Unit	Quantity	11	12	13	14	15	16	17	18	19	20
Electricity Demand for 4 MGD pumps (Total kWh/yr)	\$ 28,500	Year	1	\$17,044	\$16,266	\$15,524	\$14,815	\$14,138	\$13,493	\$12,877	\$12,289	\$11,728	\$11,192
Sodium Permanganate Solution (Total gal/yr)	\$ 120,000	Year	1	\$71,766	\$68,489	\$65,362	\$62,378	\$59,530	\$56,812	\$54,218	\$51,742	\$49,380	\$47,125
Sodium Permanganate System Maintenance	\$ 1,500	Year	1	\$897	\$856	\$817	\$780	\$744	\$710	\$678	\$647	\$617	\$589
Total Present Value of Y	Total Present Value of Yearly O&M Expenses (Years 11-2						\$77,972	\$74,412	\$71,015	\$67,772	\$64,678	\$61,725	\$58,906
							Total Pre	sent Value	of Annua	I O&M Co	sts (Life of	Project):	\$1,903,989

4.2.9 Alternative No. 2 – Present Value of Intermittent Operations and Maintenance Costs (Year 1 to 10)

Та	Table 4.2.9. Present Value of Intermittent Operations and Maintenance Costs (Years 1-10)												
Raw Water Pump Station Improvements													
Montgomery County													
RWPS Improvements with 4 MGD Replacement Pumps													
Current Inflation Rate Based on Municipal Cost Inde	x: 0.09%										EPA Disco	unt Rate:	4.875%
							Present V	alue of O	&M Costs	for Year:			
Component	Unit Cost	Unit	Quantity	1	2	3	4	5	6	7	8	9	10
100 HP Motor Replacement	\$20,000	Ea	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Total Present Value of Intermittent Operations & Maintenace Costs (Years 1-10)				\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0

4.2.10 Alternative No. 2 – Present Value of Intermittent Operations and Maintenance Costs (Year 11 to 20)

Table 4.2.10. Present Value of Intermittent Operations and Maintenance Costs (Years 11-20) Raw Water Pump Station Improvements													
Montgomery County													
RWPS Improvements with 4 MGD Replacement Pumps													
Current Inflation Rate Based on Municipal Cost Index: 0.09% EPA Discount Rate: 4.8											4.875%		
				Present Value of O&M Costs for Year:									
Component	Unit Cost	Unit	Quantity	11	12	13	14	15	16	17	18	19	20
100 HP Motor Replacement	\$20,000	Ea	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$15,708
Total Present Value of Intermittent Op	(Years 11-20):	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$15,708		
Total Present Value of Intermittent Operations & Maintenance Costs (Life of Project): \$15,									\$15,708				

4.3 Alternative No. 3 – RWPS Improvements with 6 MGD Replacement Pumps and VFDs

Table 4.3. RWPS Improvements with 6 MGD Replacement Pumps and VFDs											
Alter	native No. 3										
Provide a description of the above alternative in accordance	e with Sections 3.6.1.1 thro	ough 3.6.1.8 of the guidance.									
Supporting Information A	Appendix Reference:	Appendix 7									
D	escription										
Construct two (2) 6 MGD pumps with new va	riable frequency driv	ves (VFDs) and motors in the two									
vacant spots within the lower level of the Montgomery County Raw Water Pump Station property and											
then remove the existing two (2) 6 MGD pumps. In addition to pump and motor replacements, the											
project includes:											
 Replacement of check valves, butterfly valves, piping and appurtenances associated with pumps replacements; Replacement of 300 kW emergency generator and automatic transfer switch; 											
Replacement of Motor Control Center (MCC) and miscellaned	ous electrical;									
 Modification of SCADA system and relocation of antennae; 											
Replacement of sump pump and float; Replacement of a sodium pump and pump	a, rata na .										
Installation of a sodium permanganate sLandscape bank stabilization;	system;										
 Modification of access hatch to pump st 	tation lower level.										
	T										
Is Figure Included? Yes No	If Yes, Figure #: Figure 5, Appendix 2										
Alternative Feasibility: Feasible	Infeasible										
Capital Cost: \$1,484,700	Capital Cost:	\$4,421,979									
Environment	al Impact Description	1									
Provide a <u>qualitative</u> description of the environmental impa	acts and compare the impo	acts to that of the Preferred Alternative.									
This alternative is intended to have a positive er failure of the sole source of potable water to Mo	•	•									
All construction activity will take place on the feet environment. Operation of construction machine exhaust fumes and potentially generating dust demporary and once construction is complete, necessity.	nery will create additi Iuring the constructio	onal noise at the RWPS along with n operations. These impacts will be									
Landscape bank stabilization will reduce slope of and erosion control plan will protect the areas a of the project and adequate stabilization of the removed.	djacent to the site du	ring stabilization. Upon completion									

Table 4.3. RWPS Improvements with 6 MGD Replacement Pumps and VFDs											
Environmental Impact Analysis											
Greater than Preferred Alternative											
Less than Preferred Alternative											
Same as Preferred Alternative											
Acceptance/Rejection											
Alternative: Accepted Rejected											
Rationale for Acceptance/Rejection											
Discuss the rationale for acceptance/rejection of the above-referenced alternative.											
This alternative addresses the needs of Montgomery County to improve and replace aging infrastructure at the RWPS to ensure the reliable production of raw water for the County's WTP. This alternative also improves the overall operation, reliability, safety and quality of the RWPS and would help ensure continued service for its current and future customers for decades to come. This alternative is rejected due to the total present worth and annual O&M costs as they compare to Alternative No. 1, the "Preferred Alternative".											

4.3.1 Alternative No. 3 – Capital Costs

	Table 4.3.1. Capita										
Raw Wa	ater Pump Station	-									
	Montgomery Co										
Complete the areas shown in gray below. Where shown,	•	· · · · · · · · · · · · · · · · · · ·	•	·							
Alternative:		rovements with 6	MGD Replacement	Pumps with VFDs							
Project Administration (\$):	\$219,000										
Component	Unit Cost ^a	Unit	Quantity	Total Cost							
Mobilization (3% of Construction Cost)	\$33,600	LS	1	\$33,600							
6 MGD Pump Replacement	\$90,000	EA	2	\$180,000							
Variable Frequency Drives	\$51,000	EA	2	\$102,000							
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$115,000							
300kW Generator and ATS Replacement	\$150,000	EA	1	\$150,000							
MCC Replacement	\$175,000	EA	1	\$175,000							
SCADA Improvements	\$75,000	LS	1	\$75,000							
Sump Pump and Float Replacement	\$5,000	LS	1	\$5,000							
Sodium Permanganate System	\$75,000	LS	1	\$75,000							
Landscape Bank Stabilization	\$50,000	LS	1	\$50,000							
Lower Level Access Hatch	\$20,000	LS	1	\$20,000							
5 Ton HVAC System	\$10,000	EA	1	\$10,000							
Electrical Improvements	\$100,000	LS	1	\$100,000							
Bypass Pumping	\$45,000	LS	1	\$45,000							
Erosion Control	\$15,000	LS	1	\$15,000							
^a Unit costs are in today's dollars, not future dollars.	Total Construction Cost: \$1,										
		C	ontingency Cost:	\$115,100							
		Project Adm	ninistration Cost:	\$219,000							
		To	otal Capital Cost:	\$1,484,700							

4.3.2 Alternative No. 3 – Project Cost Life Cycle Assumptions

Table 4.3.2. Project Cost Life Cycle Assumptions Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps with VFDs

Complete the areas shown in gray.

Complete the areas shown in gray.	1		1
	Expected Life	Replacement	
Component	Cycle	Expected?†	Rationale for Expected Life Cycle
Mobilization (3% of Construction Cost)	N/A	N/A	One time incidental cost
			Pumps are expected to last 40 years,
6 MCD Dump Bonla coment	20-40 years	Yes	however the motors are expected to last 20
6 MGD Pump Replacement	20-40 years	res	years, therefore partial replacement cost is
			expected
Variable Frequency Drives	20 years	Yes	Expected to last 20 years
Piping, Valves, and Appurtenances	40 years	No	Expected to last a minimum of 40 years
300kW Generator and ATS Replacement	25 years	No	Expected to last 25 years per AMP
MCC Replacement	50 years	No	Expected to last 50 years per AMP
SCADA Improvements	50 years	No	Expected to last 50 years per AMP
Sump Pump and Float Replacement	2 years	Yes	Historically requiring replacement every 2
Sump Fump and Hoat Replacement	2 years	163	years at this station
Sodium Permanganate System	25 years	No	Expected to last 25 years
			One time cost. Correct stabilization should
Landscape Bank Stabilization	N/A	N/A	last as long as the ground remains
			undisturbed.
Lower Level Access Hatch	50 years	No	Expected to last 50 years or longer
5 Ton HVAC System	20 years	Yes	Expected to last 20 years
Electrical Improvements	50 years	No	Expected to last 50 years
Bypass Pumping	6 months	No	Temporary Construction Measure
Erosion Control	2 years	No	Temporary Construction Measure

[†]Period for replacement would be Years 1 through 20 only.

4.3.3 Alternative No. 3 – Replacement Costs (Years 1 to 5)

Table 4.3.3. Replacement Costs (Years 1 to 5) **Raw Water Pump Station Improvements Montgomery County**

RWPS Improvements with 6 MGD Replacement Pumps with VFDs Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875% Present Value of Replacement Costs in Year: 1 Component **Unit Cost** Unit Quantity 2 3 4 5 \$0 Mobilization (3% of Construction Cost) \$33,600 LS \$0 \$0 \$0 1 \$0 \$0 \$0 \$0 \$0 6 MGD Pump Replacement \$90,000 EΑ 2 \$0 Variable Frequency Drives \$51,000 EΑ 2 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 Piping, Valves, and Appurtenances \$115,000 LS 1 \$0 \$0 \$0 \$0 \$0 300kW Generator and ATS Replacement \$150,000 EΑ 1 \$0 \$0 \$0 MCC Replacement \$175,000 EΑ \$0 \$0 1 \$0 \$0 \$0 \$0 \$0 SCADA Improvements \$75,000 LS 1 \$0 \$0 \$4,820 \$0 \$4,647 Sump Pump and Float Replacement \$5,000 LS 1 \$0 \$0 \$0 \$0 \$0 Sodium Permanganate System \$75,000 LS 1 \$0 \$0 \$0 \$0 \$0 \$50,000 LS Landscape Bank Stabilization 1 \$0 \$0 Lower Level Access Hatch \$20,000 LS \$0 \$0 \$0 1 \$0 \$0 5 Ton HVAC System \$10,000 EΑ 1 \$0 \$0 \$0 LS \$0 \$0 \$0 \$0 \$0 **Electrical Improvements** \$100,000 1 \$0 \$0 \$0 \$0 \$45,000 LS 1 \$0 Bypass Pumping \$0 \$0 \$15,000 LS \$0 \$0 \$0 **Erosion Control** \$0

Total Present Value of Replacement Costs (Years 1 to 5): \$4,820 \$0 \$4,647

4.3.4 Alternative No. 3 – Replacement Costs (Years 6 to 10)

Table 4.3.4. Replacement Costs (Years 6 to 10) **Raw Water Pump Station Improvements Montgomery County**

RWPS Improvements with 6 MGD Replacement Pumps with VFDs

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875% Present Value of Replacement Costs in Year: 6 Component **Unit Cost** Unit Quantity 7 8 9 10 \$0 Mobilization (3% of Construction Cost) \$33,600 LS \$0 \$0 \$0 1 \$0 \$0 \$0 \$0 \$0 \$90,000 EΑ 2 6 MGD Pump Replacement \$0 Variable Frequency Drives \$51,000 EΑ 2 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 Piping, Valves, and Appurtenances \$115,000 LS 1 \$0 \$0 \$0 \$0 \$0 300kW Generator and ATS Replacement \$150,000 EΑ 1 \$0 \$0 \$0 MCC Replacement \$175,000 EΑ \$0 \$0 1 \$0 \$0 \$0 \$0 \$0 SCADA Improvements \$75,000 LS 1 \$0 \$0 \$4,319 Sump Pump and Float Replacement \$5,000 LS 1 \$4,480 \$4,164 \$0 \$0 \$0 Sodium Permanganate System \$75,000 LS 1 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$50,000 LS Landscape Bank Stabilization 1 \$0 \$0 Lower Level Access Hatch LS \$0 \$0 \$0 \$20,000 1 \$0 \$0 5 Ton HVAC System \$10,000 EΑ 1 \$0 \$0 \$0 LS \$0 \$0 \$0 \$0 \$0 **Electrical Improvements** \$100,000 1 \$0 \$0 \$0 \$0 \$45,000 LS \$0 Bypass Pumping 1 \$0 \$0 \$0 \$15,000 LS \$0 \$0 **Erosion Control**

Total Present Value of Replacement Costs (Years 6 to 10): \$4,480 \$0 \$4,319

\$0

\$4,164

4.3.5 Alternative No. 3 – Replacement Costs (Year 11 to 15)

Table 4.3.5. Replacement Costs (Years 11 to 15) **Raw Water Pump Station Improvements**

Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps with VFDs Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875% Present Value of Replacement Costs in Year: Component **Unit Cost** Unit Quantity 11 12 13 14 15 \$0 Mobilization (3% of Construction Cost) \$33,600 LS \$0 \$0 \$0 1 \$0 \$0 \$0 \$0 \$0 \$90,000 EΑ 2 6 MGD Pump Replacement \$0 Variable Frequency Drives \$51,000 EΑ 2 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 Piping, Valves, and Appurtenances \$115,000 LS 1 \$0 \$0 \$0 \$0 \$0 300kW Generator and ATS Replacement \$150,000 EΑ 1 \$0 \$0 \$0 MCC Replacement \$175,000 EΑ \$0 \$0 1 \$0 \$0 \$0 \$0 \$0 SCADA Improvements \$75,000 LS 1 \$3,870 \$0 \$0 \$4,014 \$0 Sump Pump and Float Replacement \$5,000 LS 1 \$0 \$0 \$0 Sodium Permanganate System \$75,000 LS 1 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$50,000 LS Landscape Bank Stabilization 1 \$0 Lower Level Access Hatch LS \$0 \$0 \$0 \$0 \$20,000 1 \$0 \$0 5 Ton HVAC System \$10,000 EΑ 1 \$0 \$0 \$0 LS \$0 \$0 \$0 \$0 \$0 **Electrical Improvements** \$100,000 1 \$0 \$0 \$0 \$0 \$45,000 LS 1 \$0 Bypass Pumping \$0 \$0 \$15,000 LS \$0 \$0 \$0 **Erosion Control** \$4,014 \$0 \$3,870 \$0

Total Present Value of Replacement Costs (Years 11 to 15):

4.3.6 Alternative No. 3 – Replacement Costs (Year 16 to 20)

Table 4.3.6. Replacement Costs (Years 16 to 20) **Raw Water Pump Station Improvements Montgomery County**

RWPS Improvements with 6 MGD Replacement Pumps with VFDs

Current Inflation Rate based on Construction Cost Index: 2.97% EPA Discount Rate: 4.875%

Current illiation Nate based on construction cost				Pro	esent Value o	f Replacemen	nt Costs in Yea	ır:
Component	Unit Cost	Unit	Quantity	16	17	18	19	20
Mobilization (3% of Construction Cost)	\$33,600	LS	1	\$0	\$0	\$0	\$0	\$0
6 MGD Pump Replacement	\$90,000	EA	2	\$0	\$0	\$0	\$0	\$0
Variable Frequency Drives	\$51,000	EA	2	\$0	\$0	\$0	\$0	\$70,735
Piping, Valves, and Appurtenances	\$115,000	LS	1	\$0	\$0	\$0	\$0	\$0
300kW Generator and ATS Replacement	\$150,000	EA	1	\$0	\$0	\$0	\$0	\$0
MCC Replacement	\$175,000	EA	1	\$0	\$0	\$0	\$0	\$0
SCADA Improvements	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Sump Pump and Float Replacement	\$5,000	LS	1	\$3,731	\$0	\$3,597	\$0	\$3,467
Sodium Permanganate System	\$75,000	LS	1	\$0	\$0	\$0	\$0	\$0
Landscape Bank Stabilization	\$50,000	LS	1	\$0	\$0	\$0	\$0	\$0
Lower Level Access Hatch	\$20,000	LS	1	\$0	\$0	\$0	\$0	\$0
5 Ton HVAC System	\$10,000	EA	1	\$0	\$0	\$0	\$0	\$6,935
Electrical Improvements	\$100,000	LS	1	\$0	\$0	\$0	\$0	\$0
Bypass Pumping	\$45,000	LS	1	\$0	\$0	\$0	\$0	\$0
Erosion Control	\$15,000	LS	1	\$0	\$0	\$0	\$0	\$0
Total Presen	t Value of Replacem	ent Costs (Y	Total Present Value of Replacement Costs (Years 16 to 20):					

Total Present Value of Replacement Costs (Life of Project): \$118,779

4.3.7 Alternative No. 3 – Present Value of Operations and Maintenance Costs (Year 1 to 10)

	Table 4.3		•		Table 4.3.7. Present Value of Operations and Maintenance Costs (Years 1-10) Raw Water Pump Station Improvements												
		i i i		ntgomery	•	ements											
RWPS Improvements with 6 MGD Replacement Pumps with VFDs																	
Complete the cells shown in gray below.																	
Current Inflation Rate Based on Municipal Cost Index: 0.09% EPA Discount Rate: 4.875%																	
							Present '	Value of O	&M Costs	for Year:							
Component	Unit Cost	Unit	Quantity	1	2	3	4	5	6	7	8	9	10				
Electricity Demand for 6 MGD pumps w/ VFDs (Total																	
kWh/yr)	\$39,000	Yr	1	\$37,219	\$35,520	\$33,898	\$32,350	\$30,873	\$29,464	\$28,118	\$26,834	\$25,609	\$24,440				
Sodium Permanganate Solution (Total gal/yr)	\$180,000	Yr	1	\$171,781	\$163,938	\$156,453	\$149,309	\$142,492	\$135,986	\$129,777	\$123,851	\$118,196	\$112,800				
Sodium Permanganate System Maintenance	\$1,500	Yr	1	\$1,432	\$1,432 \$1,366 \$1,304 \$1,244 \$1,187 \$1,133 \$1,081 \$1,032 \$985 \$94								\$940				
Total Present Value of	Yearly O&M	Expenses (Y	ears 1-10):	\$210,432	\$200,824	\$191,655	\$182,904	\$174,553	\$166,583	\$158,977	\$151,718	\$144,791	\$138,180				

4.3.8 Alternative No. 3 – Present Value of Operations and Maintenance Costs (Year 11 to 20)

	Table 4.3.8. Present Value of Operations and Maintenance Costs (Years 11-20)												
Raw Water Pump Station Improvements													
Montgomery County													
RWPS Improvements with 6 MGD Replacement Pumps with VFDs													
Current Inflation Rate Based on Municipal Cost Index: 0.09% EPA Discount Rate: 4.87											4.875%		
							Present	Value of	O&M Cost	s for Year:			
Component	Unit Cost	Unit	Quantity	11	12	13	14	15	16	17	18	19	20
Electricity Demand for 6 MGD pumps w/ VFDs (Total													
kWh/yr)	\$39,000	Yr	1	\$23,324	\$22,259	\$21,243	\$20,273	\$19,347	\$18,464	\$17,621	\$16,816	\$16,048	\$15,316
Sodium Permanganate Solution (Total gal/yr)	\$180,000	Yr	1	\$107,649	\$102,734	\$98,043	\$93,567	\$89,295	\$85,218	\$81,327	\$77,613	\$74,070	\$70,688
Sodium Permanganate System Maintenance	\$1,500	Yr	1	\$897	\$856	\$817	\$780	\$744	\$710	\$678	\$647	\$617	\$589
Total Present Value of Y	early O&M E	xpenses (Ye	ears 11-20):	\$131,871	\$125,849	\$120,103	\$114,619	\$109,386	\$104,392	\$99,625	\$95,076	\$90,735	\$86,592
					•	•	Total Pre	sent Valu	e of Annua	I O&M Co	sts (Life of	Project):	\$2,798,864

4.3.9 Alternative No. 3 – Present Value of Intermittent Operations and Maintenance Costs (Year 1 to 10)

Table 4.3.9. Present Value of Intermittent Operations and Maintenance Costs (Years 1-10)													
Raw Water Pump Station Improvements													
Montgomery County													
RWPS Improvements with 6 MGD Replacement Pumps with VFDs													
Current Inflation Rate Based on Municipal Cost Index: 0.09% EPA Discount Rate: 4.875%													
							Present Va	alue of O&	M Costs	for Year:			
Component	Unit Cost	Unit	Quantity	1	2	3	4	5	6	7	8	9	10
125 HP Motor	\$25,000	Ea	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Total Present Value of Intermitten	Total Present Value of Intermittent Operations & Maintenace Costs (Years 1-10						\$0	\$0	\$0	\$0	\$0	\$0	\$0

4.3.10 Alternative No. 3 – Present Value of Intermittent Operations and Maintenance Costs (Year 11 to 20)

Table 4.3.10. Present Value of Intermittent Operations and Maintenance Costs (Years 11-20) Raw Water Pump Station Improvements													
Montgomery County													
RWPS Improvements with 6 MGD Replacement Pumps with VFDs													
Current Inflation Rate Based on Municipal Cost Index: 0.09% EPA Discount Rate: 4.875%													
							Present V	alue of O8	M Costs	for Year:			
Component	Unit Cost	Unit	Quantity	11	12	13	14	15	16	17	18	19	20
125 HP Motor	\$25,000	Ea	2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$19,635
Total Present Value of Intermittent Operations & Maintenace Costs (Years 11-20):				\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$19,635

Total Present Value of Intermittent Operations & Maintenance Costs (Life of Project): \$19,635

4.4 Alternative No. 4 – No Action

The following alternative description and analysis details Alternative No. 4, the "No Action" alternative.

Table 4.4.	Table 4.4. No-Action Alternative								
	No-Action								
Provide a description of the above alternative in accordan	nce with Sections 3.6.1.1 through 3.6.1.8 of the guidance.								
Supporting Information	Appendix Reference: N/A								
Description									
The "No Action" alternative involves no rehabilitation or replacement of any critical raw water pump									
station component at the Montgomery County	RWPS.								
Is Figure Included? Tyes No	If Yes, Figure #: N/A								
Alternative Feasibility: Feasible									
Capital Cost: N/A	Present Worth: N/A								
Environmental Impact Description									
Provide a <u>qualitative</u> description of the environmental impacts and compare the impacts to that of the Preferred Alternative.									
The "No Action" alternative involves the continued operation raw water pump station components									
nearing the end of their life cycle. In turn, continued use of aging equipment increases the probability of									
failure which has been characterized as ranging from major to catastrophic. Failure of the raw water									
pumps would disrupt service to customers of Montgomery County and six other municipalities, leading									
to issues of health and sanitation.									
Environm	ental Impact Analysis								
Greater than Preferred Alternative									
Less than Preferred Alternative									
Same as Preferred Alternative									
Acce	otance/Rejection								
Alternative: Accepted Re	jected								
Rationale fo	r Acceptance/Rejection								
Discuss the rationale for acceptance/rejection	of the above-referenced alternative.								
The "No Action" alternative does not provide for any replacement or rehabilitation of the deteriorating									
equipment considered critical for the continui	ty of service. This alternative does not provide any benefit								
to Montgomery County and promotes the growing risk of mechanical failure within the raw water pump									
station. Thus, this alternative is not considered a feasible alternative for the County and no further									
evaluation was performed.									

4.4.1 Alternative No. 4 – Capital Costs

This alternative is not feasible; therefore, no capital costs are provided.

4.4.2 Alternative No. 4 – Project Cost Life Cycle Assumptions

This alternative is not feasible; therefore, no life cycle assumptions are provided.

4.4.3 Alternative No. 4 – Replacement Costs

This alternative is not feasible; therefore, no replacement costs are provided.

4.4.4 Alternative No. 4 – Present Value of Operations and Maintenance Costs

This alternative is not feasible; therefore, no present value of O&M costs is provided.

4.4.5 Alternative No. 4 – Present Value of Intermittent Operations and Maintenance Costs

This alternative is not feasible; therefore, no present value of intermittent O&M costs is provided.

4.5 Alternatives Analysis Summary

		Table 4.5. Al	ternatives Analysi	s Summary	
			Alterna	tive Name	
		Alternative No. 2 RWPS Improvements with with 4 MGD Pumps	Alternative No. 3 RWPS Improvements with 6 MGD Replacement Pumps and VFDs	No-Action	Preferred Alternative Equipment Replacement with 6 MGD Pumps
Capital C	al Cost \$1,339,600 \$1,484,700 N/A		N/A	\$1,357,700	
Present	Worth	\$3,300,407	\$4,421,979	N/A	\$4,274,428
Feasibili	ty	Feasible Infeasible	Feasible Infeasible	Feasible Infeasible	
	Capital Costs	Less than Preferred Greater than Preferred Same as Preferred	Less than Preferred Greater than Preferred Same as Preferred	Less than Preferred Greater than Preferred Same as Preferred	
Impact Analysis	Present Worth	Less than Preferred Greater than Preferred Same as Preferred	Less than Preferred Greater than Preferred Same as Preferred	Less than Preferred Greater than Preferred Same as Preferred	
	Environmental	Less than Preferred Greater than Preferred Same as Preferred	Less than Preferred Greater than Preferred Same as Preferred	Less than Preferred Greater than Preferred Same as Preferred	
Rationale for Rejected Rejection/Acceptance Water Detailed narrative		Rejected – Water Demand Projections: Detailed rationale narrative following this table.	Rejected – Present Worth Cost: Detailed rationale narrative following this table.	Rejected – Does not address the need or purpose of the project.	Accepted – Present Worth Cost: Detailed rationale narrative following this table.

Each alternative was evaluated for feasibility to determine if the project would address the aging infrastructure of the raw water pump station systems to ensure uninterrupted service to the customers of Montgomery County. The feasibility evaluation also considered the general operational costs of the alternatives including the Capital Cost and Present Worth to find the most cost-effective plan.

The feasibility analysis found that three (3) alternatives met the criteria to address the needs and concerns of the County and one was determined to be the "Preferred" alternative based on the 20-year water demand projections and the total present worth and estimated annual O&M costs.

Alternative No. 1, the "Preferred Alternative" addresses the needs of Montgomery County to improve and replace aging infrastructure at the RWPS to ensure the reliable production of raw water for the County's WTP. The project will improve the overall operation, reliability, safety and quality of the RWPS and help ensure continued service for its current and future customers for decades to come. Based on the Design Flow Analysis, each feasible alternative satisfies the projected 20-year maximum daily flow, however, Alternatives No. 1 and No. 3 are better able to accommodate hypothetical growth of the service area population not accounted for in the methodology of Section 2.3.3 due to data limitations and economic uncertainty. Conversely, Alternative No. 2, which includes 4 MGD pump replacements, was rejected based on the projected 20-year maximum daily flow of 3.791 MGD which is 95% of the 4 MGD pump capacity. If future flows exceed the projections, new raw pumps would need to be installed to increase capacity. As the new raw water pumps have a life expectancy of 40 years, Alternative No. 2 was not selected. Finally, Alternative No. 3 was rejected based on the total present worth and estimated annual O&M costs. While Alternative No. 3 provides a marginal improvement to efficiency due to new VFDS, the efficiency gained is outweighed by the annual O&M and replacement costs of the VFDs.

The "Preferred Alternative" will provide the County with a cost-effective approach to address the higher priority items in need of replacement/rehabilitation and also begin to address capital improvement projects set forth in the County's CIP. This project will provide increased continuity of service for all of the water treatment plant systems critical to the safety and welfare of the public and also provide safer access to the lower level of the pump station. The Total Present Worth for this alternative is \$4,274,428. The Capital Costs are \$1,357,700 with Replacement Costs and Total O&M being \$41,109 and \$2,875,619, respectively.

4.5.1 Total Present Worth for Feasible Alternatives

Table 4.5	.1. Total Present	Worth for Feasibl	e Alternatives							
Raw Water Pump Station Improvements										
Montgomery County										
		Replacement	t							
		Costs Present				Total Present				
	Capital Costs	Worth	O&M Costs Present Worth W							
			Annual	Intermittent	Total					
RWPS Improvements with 6 MGD Replacement Pumps	\$1,357,700	\$41,109	\$2,855,984	\$19,635	\$2,875,619	\$4,274,428				
RWPS Improvements with 4 MGD Replacement Pumps \$1,339,600 \$41,109 \$1,903,989 \$15,708 \$1,919,698 \$3,						\$3,300,407				
RWPS Improvements with 6 MGD Replacement Pumps with VFDs	\$1,484,700	\$118,779	\$2,798,864	\$19,635	\$2,818,500	\$4,421,979				

4.6 Project Description

The project description of the preferred alternative, "Alternative No. 1 – RWPS Improvements with 6 MGD Replacement Pumps" is provided below.

4.6.1 Preferred Alternative Project Description

Table 4.6.1 Preferred Alternative Project Description											
Alternative No. 1 - RWPS Improvements with 6 MGD Replacement Pumps											
Montgomery County											
Project Vicinity Appendix 2, Figure 1	Project Location	Appendix 2, Figure 3									
Map Reference:	Map Reference::										
Capital Cost: \$1,357,700	Present Worth: \$4,2	74,428									

Detailed description of the project, including sizes and capacities of project components:

Montgomery County proposes improvements to its raw water pump station (RWPS) including a like-for-like replacement of the existing raw water pumps with no increase to its permitted capacity of 6 MGD. The project includes like-for-like replacement of facility's two (2) 6 MGD horizontal split case centrifugal pumps and associated motors, including replacement of check valves, butterfly valves, piping and appurtenances associated with pumps replacements, replacement of the existing 300-kW emergency generator and automatic transfer switch (ATS), replacement and relocation of the Motor Control Center (MCC) and miscellaneous electrical accessories, modification of the SCADA system with relocation of the existing antennae, sump pump and float replacement, installation of a sodium permanganate system, landscape bank stabilization, and modification of access hatch to pump station lower level.

The RWPS has four designated locations for raw water pumps, two of which are occupied by the existing 6 MGD pumps (positions #1 and #2). We propose to install two (2) new 6 MGD horizontal split case centrifugal pumps in the empty slots (positions #3 and #4) so that the existing pumps can continue to operate during construction, thereby reducing bypass pumping. Position #3 has an existing 30" intake flange, an existing check valve and an existing butterfly valve which connects to the discharge header pipe. Similarly, Position #4 has an existing 30" intake flange and an existing butterfly valve leading to the discharge header pipe, but lacks a check valve (see page 38, Raw Water Assessment Summary, Appendix 3). Beginning at the intake flanges of Positions #3 and #4, new installations will include two (2) 2" vacuum lines, two (2) 18" butterfly valves, two (2) primer valves, two (2) raw water pumps, two (2) raw water pump motors, discharge piping, one (1) check valve at position #4, and all appurtenances associated with the pump replacements.

We propose to install one (1) new Motor Control Center (MCC) on the upper floor to replace the existing MCC. The upper floor has ample space such that the new MCC can be installed while the existing MCC continues to operate during construction.

Proposed SCADA modifications and improvements will be designed to provide enhanced information on system performance such as pump discharge pressure, suction pressure alarm, check valve limit switch status and sump pump activity. The SCADA antenna will be relocated to the position indicated in Appendix 2, Figure 3, in order to improve the signal transfer. A weather

head will be added to the power pole containing the associated electrical conduit.

The existing emergency generator and automatic transfer switch (ATS) on site at the RWPS will be replaced with a new 300kW generator and ATS at its current location (see Figure 3).

Montgomery County proposes to pretreat the raw water for taste and odor control and improve water quality through removal of organic content, iron and manganese with a sodium permanganate system. The County prefers liquid form (sodium permanganate) because it is easier to transport, store and handle when compared to the dry powder form (potassium permanganate). Sodium permanganate will be injected into the raw water line at the RWPS prior to reaching the WTP. This will help prevent biofilm growth while allowing sufficient detention time for the permanganate to be consumed prior to adding coagulants, thus reducing potential colloidal byproducts.

The County proposes to improve access to the lower level of the RWPS facility where the pumps and motors are located. The access is now through a hatch in the floor which does not provide comfortable headroom when descending/ascending the steep ship ladder-style steps. It is especially difficult to negotiate the access hatch while transporting equipment and tools, therefore, the access hatch will be widened to create more headroom.

The sump pump and float will be replaced because they are recommended for replacement every two years and the float signals were not verified to be in working order.

Finally, the County proposes general site improvements to stabilize steep embankments on either side of the RWPS. Erosion control efforts from the 2015 project were unsuccessful where slope erosion has continued to dominate the embankments. Slopes will be stabilized by enhancing vegetation cover, flow diffusing cover, or redirecting water flow. Vegetation is also intruding on the security fence and other areas within the property and will be removed accordingly.

Discuss permit requirements and status of each permit for the proposed project:

The implementation of this project is not anticipated to require significant permitting. The landscape bank stabilization component of the project may require an Erosion Control permit as a result of the stabilization activities. All additional construction activity will be conducted inside the RWPS or within the fence line of the property as seen in Figure 3 of Appendix 2. A public water supply permit may be required to review the sodium permanganate system. The proper State sections will be contacted to inform them of the impending work.

Discuss any sustainability considerations:

There are no sustainability considerations associated with this project.

Discuss all funding sources for the project:

This project is funded by the Division of Water Infrastructure with a State Reserve Project Grant of \$157,650 and Drinking Water State Revolving Funds Loan in the amount of \$1,200,050 with \$521,200 eligible for principal forgiveness. The grant fee and loan closing cost of \$26,400 will be paid by local funds.

5.0 Environmental Information Document

This project meets the "minimum criteria" for a categorical exclusion from substantive environmental review requirements (CE) under 15A NCAC 1C.0408. The submittal for the Categorical Exclusion is included in Appendix 5 with all checklists, supporting information, and notification documents.

6.0 Financial Analysis

6.1 Applicant's/LGU's Financial Condition

Table 6.1. Applicant's/LGU's Financial Condition Raw Water Pump Station Improvements RWPS Improvements with 6 MGD Replacement Pumps

Utility Bill as Percent of Median Household Income

Use the pulldown menu to select the type of rate structure used for water and sewer. If using a rate structure other than uniform, then there is no need to complete the base charge (charge and volume) or volumetric charge.

	Sewer Rate Structure	Water Rate Structure			
Rate Structure:	Other	Other			
Base Charge:					
Thousands of Gallons in Base Charge:					
Volumetric Charge per 1,000 gallons:					
Monthly Bill for 5,000 gallons:	\$0.00	\$41.00			
Combined Monthly Water and Sewer Bill for 5,000 gallons:	\$41.00				
Median Houshold Income:	\$34,	819			
Monthly Median Household Income for LGU:	\$2,902				
Bill as % of Median Household Income:	0.00%	1.41%			
Overall Bill as % of Median Household Income:	1.4	1%			
1					

Additional Information if needed (see Subchater 8.1 of Part B of the guidance).

Montgomery County provides water to 6 municipalities in addition to their direct customers, however they only provide sewer service to 3 municipalities. Therefore the project is assessed based on their water utility bill only.

6.2 Funding Distribution

Table 6.2. Funding Distribution Raw Water Pump Station Improvements Montgomery County

RWPS Improvements with 6 MGD Replacement Pumps

Enter data into the gray areas. Where applicable, use the pulldown menus as shown by the arrows.

\$157,650

Specified **Interest Rate** Repayment **Funding** from LOIF^b (if Period (if Source^a **Amount Funding Type** applicable) applicable) Main Division Funding: DWSRF \$678,850 Loan 0.000% 20 Funding 1: DWSRF-PF \$521,200 Principal Forgiveness 0.000% N/A

Grant

Cash

If Other, list:

N/A

N/A

N/A

N/A

Funding 3: Local Funds Closing Cost

Closing/Administrative Fee(s): \$26,400

Total Funded Amount (minus applicable closing/administrative

Total Project Cost (with

Total Project Cost (with closing/administrative fee[s]): \$1,384,100

Funding 2: DW-SRP

6.3 Year 1 Interest and Repayment

Table 6.3. Year 1 Interest and Repayment Raw Water Pump Station Improvements Montgomery County RWPS Improvements with 6 MGD Replacement Pumps											
Total Funding Year 1 Principal Year 1 Interest Year 1 Total Paymen Funding Source Amount Payment Payment (Principal + Interest)											
Main DWI Funding :		\$678,850	•	•							
Funding 1:	DWSRF-PF	\$521,200									
Funding 2:	DW-SRP	\$157,650									
Funding 3:	Funding 3: Local Funds Closing Cost										
	\$33,943										

^aThe interest rates are shown on Table 6.2

^aFor SRP grants, grant administrative fee is 1.5% of Total grant award.

For SRP and SRF loans, loan administrative fee is 2.0% of Total loan award.

^bLOIF is Letter of Intent to Fund issued by the Division.

6.4 User Fee Increase Due to Project

Table 6.4. User Fee Increase Due to Project **Raw Water Pump Station Improvements Montgomery County RWPS Improvements with 6 MGD Replacement Pumps** Average Water Total Monthly Water Usage for Customer Base (gallons): 80,795,122,500 Usage Per Month Number of Total Monthly Water Usage (gallons) by Customer Type (gallons) Connections Select Customer Type for Financing Project^c \checkmark Residential # of 5,000 Gallon Units to Finance Project: 14,174,167 5,610 79,517,075,000 16,159,025 $\overline{\mathbf{v}}$ Non-Residential Year 1 O&M Expenses Due to Project: 8,577,500 149 1,278,047,500 \$214,727 Monthly Cost/5,000 Gallons Due to Monthly Cost/ 5,000 Gallons Due to Year 1 Annual Year 1 Annual **Total Year 1 Annual Costs** Year 1 Monthly Costs @ Project @ Specified Interest Rate (All Project @ Specified Interest Rate **Funding Source** Repayment **O&M Costs** @ Specified Interest Rate Specified Interest Rate Users) (Residential Users Only) \$0.00 \$0.00 DWI Main Funding Source **DWSRF** \$33,943 \$214,727 \$248,670 \$20,722 Funding Source 1 DWSRF-PF DW-SRP Funding Source 2: Funding Source 3 Local Funds Total Year 1 Annual Cost @ Specified Interest Rate \$248,670 Total Year 1 Monthly Cost @ Specified Interest Rate: \$20,722 \$0.00 Total Monthly Cost to Treat 5,000 Gallons @ Specified Interest Rate Total Monthly Cost to Treat 5,000 Gallons @ Specified Interest Rate (Residential Users Only) \$0.00

6.5 Impacts to User Rates

Table 6.5. Impacts to User Rates Raw Water Pump Station Improvements Montgomery County RWPS Improvements with 6 MGD Replacement Pumps										
Current Sewer Bill (\$/5,000 gallons):	N/A									
Current Water Bill (\$/5,000 gallons):	\$41.00									
Current - Combined Water & Sewer Bill (\$/5,000 gallons):	\$41.00									
	Funding Source	User Rate Increase Due to Project @ Specified Interest Rate (All Users)	User Rate Increase Due to Project @ Specified Rate (Residential Users Only)							
Main IFS Funding Source:	DWSRF	\$0.00	\$0.00							
Funding Source 1:	DWSRF-PF									
Funding Source 2:	DW-SRP									
Funding Source 3:	Local Funds									
Total User Rate Increase Due to DWI Loan	(s) (\$/5,000 gal.):	\$0.00	\$0.00							
Total Increase Due to All Loans	s(s) (\$/5,000 gal.):	\$0.00	\$0.00							
New Sewer Bill Due to DWI Loan	(s) (\$/5,000 gal.):	N/A	N/A							
New Sewer Bill Due to All Loan	(s) (\$/5,000 gal.):	N/A	N/A							
Percent Change in Sewer Bill Du	e to DWI Loan(s):	N/A	N/A							
Percent Change in Sewer Bill D	ue to All Loan(s):	N/A	N/A							
New Sewer & Water Bills Due to DWI Loan	(s) (\$/5,000 gal.):	\$41.00	\$41.00							
New Water & Sewer Bills Due to All Loan	(s) (\$/5,000 gal.):	\$41.00	\$41.00							
Percent Change in Sewer & Water Bills Du	0.00%	0.00%								
Percent Change in Sewer & Water Bills D	0.00%	0.00%								

 $^{^{\}rm a}\text{Change}\,\text{in}\,\,\text{User}\,\,\text{Fee}\,\text{to}\,\,\text{finance}\,\,\text{DWI}\,\,\text{Loan}.$

 $^{^{\}rm b}\text{Change}\,\textsc{in}$ User Fee to finance ALL funding sources.

6.6 Impact to Bills Due to Project

Table 6.6. Impact to Bills Due to Project **Raw Water Pump Station Improvements Montgomery County RWPS Improvements with 6 MGD Replacement Pumps** Sewer Bill as % Monthly MHI: N/A Water Bill as % Monthly MHI: 1.41% Current Sewer Bill (\$/5,000 gal.): Current Water Bill (\$/5,000 gal.): \$41.00 N/A Current Sewer & Water Bill (\$/5,000 gal.): 41.00 Sewer & Water Bill as % Monthly MHI: 1.41% Monthly MHI for LGU: \$2,902 Sewer Bill Due to Sewer Bill Due to All Water & Sewer Bills Water & Sewer Bills **DWI Loans** Loans **Due to DWI Loans Due to All Loans** Specified Interest Rate (All Users) New N/A N/A \$41.00 \$41.00 New %MHI Due to Project N/A N/A 1.41% 1.41% Potentially Significant Impact? N/A N/A No No Specified Interest Rate (Residential N/A N/A \$41.00 \$41.00 New Users Only)

If the user fee increases will be significantly increased, discuss why the LGU has determined to proceed with the project.

New %MHI Due to Project

Potentially Significant Impact?

If a different financial model has been used to determine project financing, then discuss how the Applicant will accommodate the project in terms of financing it.

N/A

N/A

N/A

N/A

1.41%

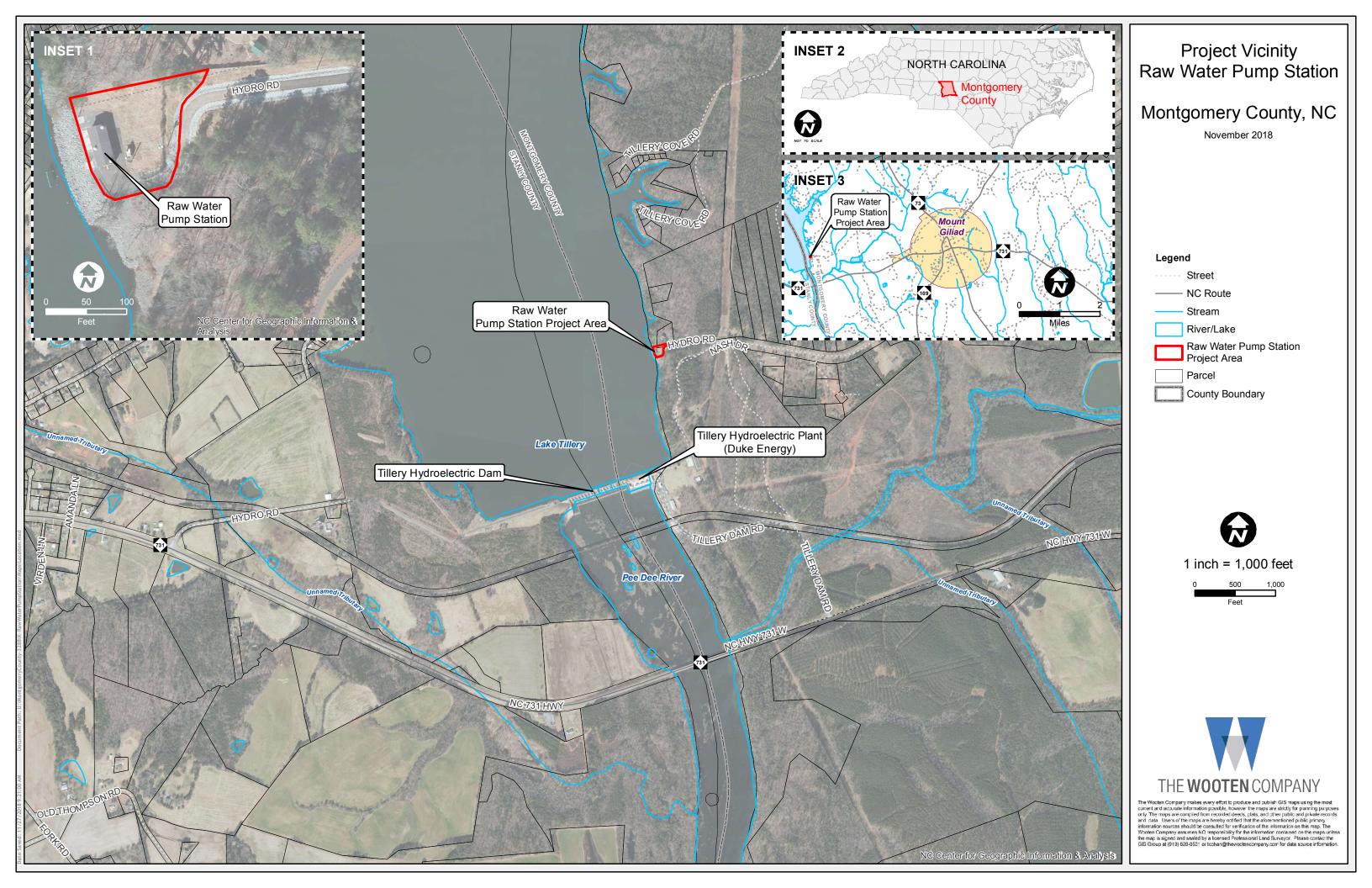
No

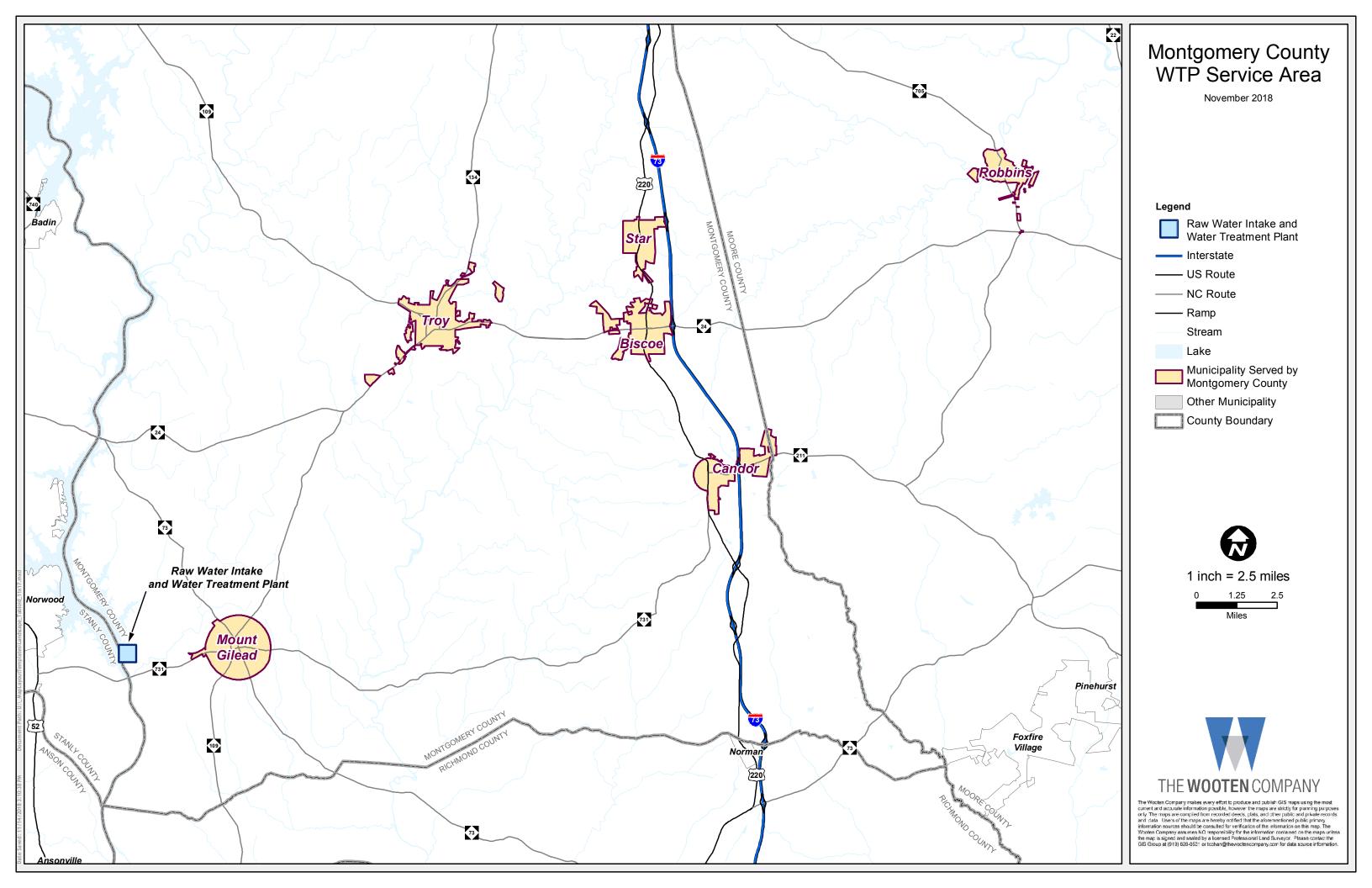
1.41%

No

7.0 Public Participation

Public Participation for DWSRF programs is completed during the DWSRF Environmental Process.


APPENDIX 1


Submi	ittal Checklist for E	_	_	rts/Enviro	nmental l	nformatio	on Docum	ents		
	accompany the initial si contain this checklist, th						tion Docume	ents. If your		
A. Number of Re										
	Submitted: 2 copies	4 copie	es (FONS	Is only)	Other	r:				
B. Contact Infor	mation	74 14 3.71								
Owner Information	l									
	n (Elected Official or At	uthorized Re		ive) different t	from the an	plication?	Yes	□No		
First Name	Last Name	Suffix		Position	· · · · · · · · · · · · · · · · · · ·		d Official			
Chris	Hildreth		Direct	or of Develop	ment and		rized Repres	entative		
Infrastructure										
Mailing	Address 1	Mai	ling Add	ress 2	C	City	State	Zip Code		
PO I	Box 425					roy	NC	27371		
	E-Mail Add	ress				Number		n (if applicable)		
ch	ris.hildreth@montgome		com		80-0.0000000000000000000000000000000000		Ziktenoro.	a (ii applicable)		
chris.hildreth@montgomerycountync.com (910) 439-6197 Consultant Information										
	n different from the app	lication?	Yes 🗌	No			3 3130			
	n Name		First Nan			Last Name		Suffix		
The Wooten Company Courtney						Gamble		P.E.		
		Mai				City	State	Zip Code		
Mailing Address 1 Mailing Address 2 300 S Main St Lower Level							NC NC	27101		
E-Mail Address Phone Number Extension (if applicable) cgamble@thewootencompany.com (336) 722-5326										
Environmental Info	ormation Document Co				(330) /	22 3320				
	prepare the Environme			mont? V	ec	⊠ No				
157 5	information below. If N			\$40 VC		-				
	Name	r	First Nan		Injormatio	Last Name		Suffix		
1111	Tranic	·	rii st ivan	ic		L'ast Ivallie		Suma		
Mailing	Address 1	Mai	ling Add	ress 2	C	ity	State	Zip Code		
	TO NATIONAL AND				DI .	NT 1		// 11 11 11		
	E-Mail Addı	ress			Phone	Number	Extension	ı (if applicable)		
	-						3 1			
C. Project Inform	nation									
			Projec	t Name		V 100 (20 V)				
				ery County						
		Raw Wate	r Pump St	tation Improv	ements					
Project Type										
Check all that apply checked.	in terms of project type	. Note that j	for the CL	BG-I prograi	m, projects	in both wast	ewater and t	water may be		
☐ Wastewater Tre	atment Plant Equipmen	t Repair and		Water T	reatment P	lant Equipm	ent Repair a	nd Replacement		
Replacement						lant Expansi				
Wastewater Treatment Plant Expansion Water Line Rehabilitation and Replacement										
	Collection System Rehabilitation and Replacement Water Storage Repair/Replacement/Expansion									
Collection System	(7 0)			☐ Water S	Source Deve	elopment				
Reclaimed Wat		2								
	st Management Practice	5								
Stream/Buffer/Wetland Restoration Rainwater Harvesting										

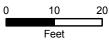
Form ER/EID-SUBMITTAL-5/17 Page 1

D. Environmental Information									
Check the box for the appropriate final information document required for the project and based upon the minor construction activities listed in Appendix A of the guidance (CWSRF, DWSRF, WW-SRP, and DW-SRP only), and any discussion with Division staff. Note: Under the CDBG-I program, the Responsible Entity will be in charge of the environmental review process. The Consultant should check which environmental document the Responsible Entity is preparing.									
Final Environmental Document									
☐ Certificate of Exemption (CDBG-I only) ☐ Categorical Exclusion Not Subject to \$58.5 (CDBG-I only) ☐ Categorical Exclusion Subject to \$58.5 (CDBG-I only) ☐ Finding of No Significant Impact (all funding programs) ☐ Categorical Exclusion (CWSRF and DWSRF only) ☐ Record of Decision (all funding programs) ☐ Approval Only (WW-SRP and DW-SRP)									
Check the box(es) for the river basin(s) where t	he project is found.	. This	information is used for programmatic repe	orting	purposes.				
□ Broad □ New □ Cape Fear □ Pasquotank □ Catawba □ Roanoke □ Chowan □ Savannah □ French Broad □ Tar-Pamlico □ Hiwassee □ Watauga □ Little Tennessee □ White Oak □ Lumber ⋈ Yadkin Neuse									
E. Funding Information									
Estimated Project Cost									
Provide the estimated Project Cost: \$1,384,100	including grant &	loan i	ee estimates						
Funding Source(s)									
Check the box(es) for each source of funding, in	icluding those outs	ide of		opropi	riate column.				
☐ CWSRF ☐ DWSRF ☐ CDBG-I ☐ WW-SRP ☐ DW-SRP	\$ \$1,200,050 \$ \$ \$ \$ \$ 157,650		North Carolina Rural Center USDA Grant/Loan Bonds Local Funds Bank Loans Other, Specify: DWSRF Loan	\$ \$ \$ \$ \$	26,400				
F. Signature									
This submittal checklist has been completed and	d is, to the best of n	ny kno	owledge, accurate.						
Signature: (author) IN Smill									
Signature: (AUTHUU M & Date: 11/30/18									

APPENDIX 2

Alternative 1
RWPS Improvements with
6 MGD Replacement Pumps

DWI Project Nos. H-SRP-D-18-0161 and WIF1951 Raw Water Pump Station Improvements


Montgomery County, NC 35.2112° N, 80.0639° W

November 2018

The Wooten Company, NC OneMap

1 inch = 20 feet

The Wocten Company makes every effort to produce and publish GIS maps using the most current and accurate information possible, however the maps are strictly for painting purposes only. The maps are compited from recorded decks, plats, and other public and private records and data. Users of the maps are hereby notified that the aforementioned public primary information sources should be consulted for verification of the information on this map. The Wooten Company assumes NO responsibility for the information contained on the maps unless the map is signed and sealed by a licensed Profess sonal Land Surveyor. Please contact the GIS Group at (919) 828-0531 or toohan@thewoctencompany.com for data source information.

Alternative 2 RWPS Improvements with 4 MGD Replacement Pumps

DWI Project Nos. H-SRP-D-18-0161 and WIF1951 Raw Water Pump Station Improvements

Montgomery County, NC 35.2112° N, 80.0639° W

November 2018

The Wooten Company, NC OneMap

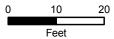
1 inch = 20 feet

0 10 20 Feet

The Wocten Company makes every effort to produce and publish GIS maps using the most current and accurate information possible, however the maps are strictly for painting purposes only. The maps are compited from recorded decks, plats, and other public and private records and data. Users of the maps are hereby notified that the aforementioned public primary information sources should be consulted for verification of the information on this map. The Wooten Company assumes NO responsibility for the information contained on the maps unless the map is signed and sealed by a licensed Profess sonal Land Surveyor. Please contact the GIS Group at (919) 828-0531 or toohan@thewoctencompany.com for data source information.

Alternative 3
RWPS Improvements with
6 MGD Replacement Pumps
with VFDs

DWI Project Nos. H-SRP-D-18-0161 and WIF1951 Raw Water Pump Station Improvements


Montgomery County, NC 35.2112° N, 80.0639° W

November 2018

The Wooten Company, NC OneMap

1 inch = 20 feet



The Wooten Company makes every effort to produce and publish GIS maps using the most current and accurate information possible, however the maps are strictly for painting purposes only. The maps are complied from recorded deeds, plats, and other public and private records and data. Users of the maps are hereby notified that the aforementioned public primary information sources should be consulted for verification of the information on this map. The Wooten Company assumes NO responsibility for the information and act in the maps the map is signed and sealed by a licensed Professional Land Gurveyor. Please contact the GIS Group at (919) 828-9531 or toohan@thewootencompany.com for data source information.

APPENDIX 3

3.a Raw Water Intake Asset Assessment

Executive Summary

Montgomery County

Raw Water Intake

Asset Assessment

Asset Assessment Methodology

- 1. This report provides assessment results conducted for equipment, components and systems in the following Public Utility facility:
 - a. Montgomery County Raw Water Intake
- 2. Specific assessments were performed in the following areas:
 - a. Structural Integrity
 - b. Pumps and Motors
 - c. Valves and Actuators
 - d. Electrical Inspection
 - e. Piping Inspection
 - f. Overall Site Evaluation
 - g. Overall Station Inspection
- Assessment results are summarized for each type of asset (equipment, component or system) and listed on the attached "Asset Summary Sheets & Risk Analysis" document. Report details include, but are not limited to:
 - a. Asset Name
 - b. Installation Year
 - c. Condition
 - d. Consequences of Failure
 - e. Replacement Year
 - f. Replacement Cost
 - g. Repair Cost
 - h. Remaining Life
 - i. Expected Life
 - j. Probability of Failure %

- 4. Condition was determined for each asset based on:
 - a. Probability of Failure (determined by CRU formula weighted per remaining/expected life, exposure environment, performance data, maintenance/failure history, operational status, vibration and electrical condition).
 - b. Consequences of Failure (based on operational impact at component level).
 - c. A "Criticality Value" and specific "CRU Designed Inspection" documents were used to assign condition grades based on the scales explained below.
- 5. Criticality Value A standardized scale used to determine failure probability & consequences based on a condition grade from 1 to 5 as shown in Figure 1 below:

Figure 1

Condition Grade	1	2	3	4	5
Probability of Failure	90% of remaining life	75% of remaining life	50% of remaining life	25% of remaining life	0% of remaining life
Consequences of Failure	Insignificant	Minor	Moderate	Major	Catastrophic

6. Specific Component Scoring Criteria - Based on equipment age, operational & maintenance historical data, visual inspection & performance testing results, the overall asset was assigned an average score using criteria that is repeatable and non-subjective per the following scale:

Excellent	Very Good	Good	Fair	Poor
<u><</u> 1.0	1.1 to 2.0	2.1 to 3.0	3.1 to 4.0	4.1 to 5.0

- 7. The following CRU designed documents were used to determine the average scores and are attached.
 - a. **CRU Overall Ratings Guide** provided high level guidelines to determine if equipment was in Excellent, Very Good, Good, Fair or Poor condition.
 - b. CRU Designed Inspection Grade Criteria provided individual inspection points for each component in the asset category.
 - A score of 1 to 5 was assigned for each component inspection point in the asset category and added together to determine a total asset score.
 - 2) The total asset scores were then divided by the number of individual inspection points to determine the average score.
 - 3) The average score was reviewed to determine the equipment condition (for example an average score of 1.5 would indicate the equipment is in "Very Good" condition).
 - c. CRU Designed Average Equipment Life provided guidelines for factoring equipment age to determine if equipment was in Excellent, Very Good, Fair or Poor condition.
- 8. Based on results and manufacturer maintenance recommendations, a Preventive Maintenance Matrix (PM Matrix) was developed and issued to the customer per the **Underwood Procedure, CRU-PM-MATRIX-01** format (this is a document separate from the information contained in this Executive Summary).

9.	Photos are attached as supporting documentation to identify and provide additional detail for conditions assessed, as required.

Sheet 1 of 5

Montgomery Co Inventory & Ri			1194 Hydro Rd Mt. Gilead, NC 27306				Raw Water Intake			
Asset	Installation Year	Condition	Consequence of Failure	Replacement Year	Replacement Cost	Repair Cost	Remaining Life	Expected Life	Probability of Failure %	
Building (Concrete/Steel Integrity)	1982	Fair 3.1	Moderate 3			N/J	4			
Intake, Wet Well, Valve Boxes	1982	Fair 3.1	Moderate 3			N/A	4			
Crane/Hoist (manual)	1982	Fair 3.1	Moderate 3	2032	9,000.00	N/A	14 years	50 yrs.	N/A	
Raw Water Pump #1 (Aurora 411- BF)/rotating assy. replaced	1982/2009	Good 2.7	Major 4	2024	40,000.00	18,000. ⁰⁰ (rotating assembly)	6 years	40 yrs.	50% (2.54)	
Raw Water Pump #2 (Aurora 411- BF)/rotating assy. replaced	1982/2009	Good 2.7	Major 4	2024	40,000.00	18,000. ⁰⁰ (rotating assembly)	6 years	40 yrs.	50% (2.54)	
Raw Water Pump Motor #1 (U.S. Motors Frame 445T, 125 HP)	1982 (rewound twice)	Good 2.7	Moderate 3	2022	11,000.00	6,500.00	4 years	15 to 20 yrs.	50% (2.54)	
Raw Water Pump Motor #2 (U.S. Motors Frame 445T, 125 HP)	1982 (rewound twice)	Good 2.7	Moderate 3	2022	11,000.00	6,500.00	4 years	15 to 20 yrs.	50% (2.54)	
Check Valve #1 (CCNE 18" Swing Check)	2004	Very Good 1.7	Minor 2	2039	40,000.00	5,500.00	21 years	30 to 40 yrs.	N/A	
Check Valve #2 (CCNE 18" Swing Check)	2004	Very Good 1.7	Minor 2	2039	40,000.00	5,500.00	21 years	30 to 40 yrs.	N/A	

^{*} Replacement cost based on end of life cost calculated at 5% per year from current factory replacement cost.

^{**} Repair cost based on repair interval from CRU Designed Average Equipment Life table

Sheet 2 of 5

Montgomery County System Inventory & Risk Analysis		1194 Hydro Rd Mt. Gilead, NC 27306				Raw Water Intake			
Asset	Installation Year	Condition	Consequence of Failure	Replacement Year	Replacement Cost	Repair Cost	Remaining Life	Expected Life	Probability of Failure %
Check Valve #3 (CCNE 18" Swing Check - INACTIVE)	2004	Very Good 1.7	Insignificant 1		40,000. ⁰⁰	N/A	N/A	N/A	N/A
Butterfly Valve #1 (American Darling 18" with Gear Actuator)	1982	Very Good 1.7	Minor 2	2022	5,500.00	N/A	4 years	40 yrs.	N/A
Butterfly Valve #2 (American Darling 18" with Gear Actuator)	1982	Very Good 1.7	Minor 2	2022	5,500.00	N/A	4 years	40 yrs.	N/A
Butterfly Valve #3 (Dezurik 18" with Gear Actuator)	2004	Very Good 1.7	Minor 2	2044	17,500.00	N/A	26 years	40 yrs.	N/A
Butterfly Valve #4 (Dezurik 18" with Gear Actuator)	2004	Very Good 1.7	Minor 2	2044	17,500.00	N/A	26 years	40 yrs.	N/A
Butterfly Valve #5 (Dezurik 36" with Chain Wheel/Gear Actuator)	2004	Very Good 1.7	Minor 2	2044	25,000.00	N/A	26 years	40 yrs.	N/A

Montgomery Cou Inventory & Ris			1194 Hydro Rd Mt. Gilead, NC 27306				Raw Water Intake			
Asset	Installation Year	Condition	Consequence of Failure	Replacement Year	Replacement Cost	Repair Cost	Remaining Life	Expected Life	Probability of Failure %	
Butterfly Valve #6 (Dezurik 18" with Gear Actuator - INACTIVE)	2004	Very Good 1.7	Insignificant 1		17,500. ⁰⁰	N/A	N/A	N/A	N/A	
Butterfly Valve #7 (Dezurik 18" with Gear Actuator - INACTIVE)	2004	Very Good 1.7	Insignificant 1		17,500. ⁰⁰	N/A	N/A	N/A	N/A	
Gate Valve #1 (American Darling 8" with Chain Wheel Actuator & Pressure Relief/Sustaining Valve)	1982	Very Good 1.7	Minor 2	2022	1,600.00	N/A	4 years	40 yrs.	N/A	
Gate Valve #2 (American Darling 8" with Chain Wheel Actuator & Pressure Relief/Sustaining Valve)	1982	Very Good 1.7	Minor 2	2022	1,600.00	N/A	4 years	40 yrs.	N/A	
Vacuum Pump: Two Ingersoll Rand V255 Air Compressors & 5HP Baldor Motors	1982/2004	Good 2.7	Moderate 3	2024	12,000.00	5,000.00	6 years	20 years	N/A	

Sheet 4 of 5

Montgomery County System Inventory & Risk Analysis		1194 Hydro Rd Mt. Gilead, NC 27306				Raw Water Intake			
Asset	Installation Year	Condition	Consequence of Failure	Replacement Year	Replacement Cost	Repair Cost	Remaining Life	Expected Life	Probability of Failure %
Air Release Valve, CLA-VAL, 6", Model MTB3666-CAV-116, Stock# 20181204J (Raw Water Line)	2004	Very Good 1.7	Minor 2	2029	40,000.00	8,500.00	11 years	25 years	N/A
Motor Control Center/Switchgear (50 yr. maximum life, 45 yr. recommended)	1982	Fair 3.3	Catastrophic 5	2032	200,000.00	50,000.0	14 years	50 years	N/A
Conduit	1982	Good 3	Minor 2	2032	20,000.00	N/A	14 years	50 years	N/A
Electrical panels	1982	Good 3	Moderate 3	2032	15,000.00	N/A	14 years	50 years	N/A
Emergency Generator	prior 2000	By others	Major 4	2025	150,000.00	15,000.0	7 years	25 years	N/A
Piping	1982/2004	Good 2.7	Major 4	2079	400,000.00	N/A	61 years	75 years	N/A
Electrical Supply to Site	1982	Poor 4.1	Catastrophic 5	Duke Energy	Duke Energy	N/A	N/A	N/A	N/A
Drainage	1982	Very Good 1.7	Minor 2	As needed	10,000.00	N/A	N/A	N/A	N/A
Security - Fencing/Gate	1982	Very Good 1.7	Minor 2	2032	25,000. ⁰⁰	N/A	14 years	50 years	N/A

Sheet 5 of 5

Montgomery Cour Inventory & Risk		1194 Hydro Rd Mt. Gilead, NC 27306				Raw Water Intake			
Asset	Installation Year	Condition	Consequence of Failure	Replacement Year	Replacement Cost	Repair Cost	Remaining Life	Expected Life	Probability of Failure %
Grade/Drive/Asphalt	1982/2015	Very Good 1.7	Minor 2	2040	150,000.00	N/A	22 years	25 years	N/A
Lighting	1982	Very Good 1.7	Minor 2	Every 10 yrs.	6,000. ⁰⁰	2,500.00	N/A	10 years	N/A
HVAC	1982	Very Good 1.7	Insignificant 1	As needed	4,000.00	N/A	N/A	10 years	N/A
Sump & Sump Pumps	1982	Fair 4.0	Moderate 3	Every 2-3 yrs.	1,000.00	N/A	N/A	2 years	N/A

Sheet 1 of 1

	Montgomery County System Inventory & Risk Analysis		724 Hydro Rd. Mt. Gilead, NC 27306				Raw Water Meter			
Asset	Installation Year	Condition	Consequence of Failure	Replacement Year	Replacement Cost*	Repair Cost**	Remaining Life	Expected Life	Probability of Failure %	
Building (Concrete/Steel Integrity)	1985	Good 2.6	Moderate 3			N	/A			
Raw Water Meter Badger Meter Serial# 972339, Style PMT-SC	1985	Good 3.0	Minor 2	2035	15,000.00	N/A	17 years	50 years	N/A	
Rosemount Transmitter Serial # 080309100	1985	Good 3.0	Minor 2	As needed	952. ⁰⁰	N/A	N/A	N/A	N/A	
Flow Control Butterfly Valve, American 16" BFV Model 2016	1985	Very Good 1.3	Minor 2	2025	5,500.00	N/A	7 years	40 years	N/A	
Flow Control Actuator, AUMA Model SAR10.1	(unknown)	Very Good 1.3	Minor 2	N/A	6,500. ⁰⁰	N/A	N/A	25 years	N/A	
Piping	1985	Good 2.6	Major 4	2060	40,000.00	N/A	42 years	75 years	N/A	
Electrical	1985	Very Good 1.3	Moderate 3	2035	5,000.00	N/A	17 years	50 years	N/A	
Overall Site	1985	Fair 3.5	Minor 2	2035	25,000.00	N/A	17 years	50 years	N/A	

^{*} Replacement cost based on end of life cost calculated at 5% per year from current factory replacement cost.

^{**} Repair cost based on repair interval from CRU Designed Average Equipment Life table

CRU Designed

Overall Ratings Guide

Excellent	Very Good	Good	Fair	Poor
Operating same as new	Operates almost like new	Operational	Some operational issues	Subject to failure at anytime
Looks like new	No past operational issues	Meets all needs	Downtime exceeding expectations	Excessive downtime
No operational issues	Has planned maintenance but not always executed	No present issues	No regular maintenance	No maintenance
Dedicated routine maintenance	Periodic Monitoring in place	Has had minimal downtime	Starting to evaluate replacement	Replacements required
Established preventive maintenance program	Semi- established preventive maintenance program	Routine maintenance	Components beginning to run to critical failure	Run to failure
Planned maximum life cycle	Anticipating maximum life cycle	Meets average life cycle expectations	Average life cycle below expectations	Past life cycle
Minimum hours	Low hours/usage	Higher hours	Excessive Hours	Hours past design expectations

CRU Designed

Average Equipment Life

Years	Equipment
15 years	Raw Water Horizontal Split Case Pump Rebuild Cycle
40 years	Raw Water Horizontal Split Case Pump Replacement
30 years	Finish Water Horizontal Split Case Pump Rebuild Cycle
50 years	Finish Water Horizontal Split Case Pump Replacement
30 years	End Suction Pump Replacement
15 years	End Suction Pump Rebuild Cycle
15 years	Raw Water Vertical Turbine Pump Rebuild Cycle
40 years	Raw Water Vertical Turbine Pump Replacement
30 years	Finish Water Vertical Turbine Pump Rebuild Cycle
50 years	Finish Water Vertical Turbine Pump Replacement
15-20 years	Electrical Motors > 40 HP
10-15 years	Electrical Motors < 40 HP
20 years	Vacuum Pump Replacement
30 years	MCC Rebuild/Repair
50 years	MCC Replacement
50 years	Wiring & Conduit
25 years	Generator
40 years	Valves – Gate & Butterfly
20 years	Check Valves Repair
30-40 years	Check Valves Replacement
1 year	Air Release Valve Inspection

CRU Designed

Average Equipment Life

Years	Equipment
25 years	Air Release Valve Replacement
10 years	Pump Control Valve Rebuild
50 years	Pump Control Valve Replacement
40 years	Electrical Hoist Replacement
75 years	Piping Replacement
50 years	Chain Link Fence Replacement
25 years	Asphalt Repaved
10 years	Lighting Replacement
10 years	HVAC Replacement
2 years	Sump Pumps Replacement
15 years	Submersible Non-Clog Replacement
7.5 years	Submersible Non-Clog Rebuild Cycle
15 years	Rubber Expansion Joint Replacement
5 years	Gauge Replacement

Raw Water Intake

STRUCTURAL INTEGRITY

Asset #	Excellent	Very Good	Good	Fair	Poor
	1	2	3	4	5
			NCRETE	T	I
#1	No cracking or spalling, sealer good	No cracking or spalling Needs sealing/coating.	Minor cracking or spalling. Needs coating	Moderate spalling & cracking Needs repair.	Major cracking, spalling. Needs repair.
Score				4	
		Bl	JILDING		
#2	Roof				
	No leaks. New.	No leaks. Almost like new.	No leaks. Normal aging.	Some leaking. Needs minor repair.	Excessive leaking. Needs major repair.
Score			3		
#3	HVAC				
	HVAC operational. < 5 years old.	HVAC operational. <10 years old.	HVAC operational. < 20 years old.	HVAC operational but needs repair. < 30 years old.	HVAC non- operational. > 30 years old.
Score			3		
#4	Structural Integrit	У			
	Sound. New.	Sound. Almost like new.	Sound. Normal aging.	Decaying. Repairs needed.	Decaying. Safety Issues. Repairs needed.
Score				4	
#5	Floor				
	Smooth. Level. Drains operational & sealed.	Smooth. Level. Drains operational.	Rough. Level. Drains operational.	Rough. Cracked. Drain issues.	Rough. Cracked. Drain non- operational.
Score				4	
#6	Penetrations				
	Filled. No degradation.	Filled. Minor degradation.	Filled. Moderate degradation.	Open.	Open causing equipment degradation.
Score			3		
#7	Doors/Windows				
	Solid. No drag. Easy to open.	Solid. Drags but easy to open.	Drags. Approaching repairs.	Needs repair. Drags hard to open or close.	Needs repair. Major difficulty in opening/closing.
Score		2			
#8	Ladders/Steps				
	Like new.	No loose members. Normal wear.	Above average wear.	Needs repair.	OHSA non- compliant. Safety Issues.
Score		2			
Total Score	0	4	9	12	0
Structural Int	egrity Average Sco	ore = (Total Score 2	5/8)	3.1	

PIPING

	PIPING							
Asset #	Excellent	Very Good	Good	Fair	Poor			
	1	2	3	4	5			
#1	Age < 10 years	Age < 20 years	Age < 40 years	Age < 60 years	Age < 75 years			
Score			3					
#2	No leaks.	N/A	Previous signs of leaks.	N/A	Drips/Leaks.			
Score			3					
#3	Adequate support.	N/A	Questionable support	N/A	Inadequate support			
Score	1							
#4	No stresses.	N/A	Minor stresses.	N/A	Major stresses.			
Score			3					
#5	No looseness.	Questionable looseness.	Minor looseness.	Moderate looseness.	Major looseness.			
Score		2						
#6	No corrosion.	N/A	Some corrosion.	N/A	Excessive Corrosion.			
Score			3					
#7	Pipe hangers restraints optimal.	Pipe hangers restraints adequate.	Pipe hangers restraints adequate. Minimum restraint.	Pipe hangers restraints minimal support. Inadequate restraint.	Pipe hangers restraints unsupported. Loose fittings/bolts. Unrestrained.			
Score			3					
#8	Labeled.	N/A	Some/Poorly labeled.	N/A	Not labeled.			
Score					5			
#9	Alignment optimal.	Alignment adequate.	Alignment fair	Alignment bad.	Gross misalignment.			
Score		2			_			
Total Score =	1	4	15	0	5			
Piping A	sset Average Score	= (Total Score 25/9)) =	2.7				

VALVES/ACTUATORS

			S/ACTUATORS				
Asset #	Excellent	Very Good	Good	Fair	Poor		
	1	2	3	4	5		
#1	Age < 5 years	Age < 10 years	Age < 15 years	Age < 20 years	Age < 40 years		
Score	1						
#2	Correct application.	N/A	Questionable application.	N/A	Wrong application.		
Score	1						
#3	Still Manufactured? – Yes	N/A	N/A	N/A	Still Manufactured? - NO		
Score	1						
#4	AWWA spec. – Yes	N/A	N/A	N/A	AWWA spec NO		
Score	1						
#5	Operates properly? – Yes	N/A	Operates occasionally.	N/A	Operates properly? - NO		
Score	1						
#6	Internal Leakage? None	Internal Leakage? Possible	Internal Leakage? Some	Internal Leakage? Excessive	Internal Leakage? Bad/Failure imminent		
Score	1						
#7	External leakage? None	External leakage? A little	External leakage? Some	External leakage? Excessive	External leakage? Bad/Failure imminent		
Score	1						
#8	Corrosion? None	Corrosion? A little	Corrosion? Some	Corrosion? Degraded.	Corrosion? Excessive		
Score		2					
#9	Operation? Manual & Auto? Yes	N/A	N/A	N/A	Operation? Manual & Auto? NO		
Score			N/A				
#10	Safety Features? Yes	N/A	N/A	N/A	Safety Features? NO		
Score			N/A				
#11	Visual Position Indication? Yes	N/A	N/A	N/A	Visual Position Indication? NO		
Score	1						
#12	Remote Position Indication? Yes	N/A	N/A	N/A	Remote Position Indication? NO		
Score					5		
Total Score =	7	2	3	0	5		
Valves/A	Valves/Actuators Asset Average Score = (Total Score 17/10) 1.7						

PUMPS

		Р	UMPS		
Asset	Excellent	Very Good	Good	Fair	Poor
#	1	2	3	4	5
#1	90% of remaining life	75% of remaining life	50% of remaining life	25% of remaining life	0% of remaining life
Score				4	
#2	Meets original output	With 5% original output	Within 15% original output	Within 20% original output	Off > 20% original output
Score	1				
#3	Vibration within allowable range	N/A	Vibration up to 10% over allowable range	N/A	Vibration off allowable range > 20%
Score			3		
#4	Pump Packing leakage within spec	N/A	Pump Packing leakage questionable	N/A	Packing leakage out of spec
Score	1				
#5	Mech Seal – No leakage	N/A	Mech Seal – dry to slightly wet	N/A	Mech Seal – excessive leakage
Score			N/A		
#6	Bearing < 2500 hours	Bearing < 5000 hours	Bearing < 10,000 hours	Bearing < 20,000 hours	Bearing > 20,0000 hours
Score				4	
#7	Bearing – normal heat	N/A	Bearing – warm	N/A	Bearing -hot
Score			3		
#8	Bearing Lubrication scheduled & performed religiously	Bearing Lubrication scheduled & performed most of time	Bearing Lubrication scheduled & performed sometimes	Bearing Lubrication scheduled but never performed	Bearing Lubrication never scheduled or performed
Score			3		
#9	Grease no leakage	N/A	Grease some leakage	N/A	Grease excessive leakage
Score			3		y
#10	Environment – Dry/Clean with HVAC	Environment - Dry/Clean without HVAC	Environment – Clean/damp	Environment – Dirty/damp	Environment – Dirty/wet
Score			3		
#11	Concrete – large mass	Concrete – moderate mass	Concrete – minimal mass/fair grout	Concrete – eroding mass/poor bad grouting & spalling	No defined base
Score	1				

(Pumps continued next page)

CRU Designed Inspection Grade Criteria PUMPS (continued)

#12	Metal Bases – no corrosion, no cracks, no hollow spots, level	Metal Bases – light corrosion, no cracks, minimum to no hollow spots, level	co cra	etal Bases – oderate orrosion, no acks, moderate ollow spots, vel	Metal Bases – corrosion, no cracks, moderate hollow spots, levelness Issues	Metal Bases – heavy corrosion, cracks, large hollow spots, levelness issues
Score					4	
#13	Documented Maintenance History. No Failures.	N/A	Incomplete Maintenance History. Some Failures.		N/A	No Documented Maintenance History. Multiple Failures.
Score				3		
Total =	3	0		18	12	0
Pump A	Pump Asset Average Score = (Total Score 33/12) =				2.7	

		МС	TORS		
Asset #	Excellent	Very Good	Good	Fair	Poor
	1	2	3	4	5
#1	90% of remaining	75% of	50% of	25% of	0% of remaining
	life	remaining life	remaining life	remaining life	life
Score					5
#2	Amperage 90%	Amperage 95%	Amperage full	Amperage 5%	Amperage 10%
	or less of			over	over
Coore	nameplate		3		
Score #3	Infrared – no	Infrared continue	Infrared repair at	Infrared alarm	Infrared high
#3	action required	to monitor (\Delta15-	next overall	schedule next	alarm immediate
	(Δ0-14F)	39F)	outage (∆40-	train outage	action required
	(Δ0-14Γ)	391)	99F)	monitor (∆100-	monitor (∆>
			331)	179F)	180F)
Score	1			1701)	1001 /
#4	Bearings – no	Bearings – no	Bearings – noise	Bearings – noise	Bearings – noise
	noise within 25%	noise within 50%	within allowable	up to 10% over	> 10% allowable
	of allowable	of allowable	vibration	allowable	vibration
	vibration	vibration		vibration	
Score			3		
#5	Bearing < 2500	Bearing < 5000	Bearing < 10,000	Bearing < 20,000	Bearing >
	hours	hours	hours	hours	20,0000 hours
Score					5
#6	Bearing – normal heat	N/A	Bearing – warm	N/A	Bearing -hot
Score					5
#7	Bearing	Bearing	Bearing	Bearing	Bearing
	Lubrication	Lubrication	Lubrication	Lubrication	Lubrication never
	scheduled &	scheduled &	scheduled &	scheduled & but	scheduled or
	performed	performed most	performed	never performed	performed
0	religiously	of time	sometimes		
Score #8	Grease no	N/A	3 Grease some	N/A	Grease
#0	leakage	IN/A	leakage	IN/A	excessive
	leakaye		leakage		leakage
Score			3		loakago
#9	Coupling	N/A	N/A	N/A	Coupling
	Alignment within				Alignment out of
	allowable range				allowable range
Score	1				Ĭ
#10	Belts - new,	Belts - < 3 yrs.	Belts – up to 5	Belts – over 5	Belts – over 5
	properly	old, properly	yrs. old,	yrs. old,	yrs. old, not
	tensioned,	tensioned,	tensioned,	tensioned,	tensioned,
	checked per	checked	checked	squealing, not	squealing, not
	scheduled	periodically	sometimes	checked	checked
	frequency		<u> </u>		
Score			N/A		

(Motors continued next page)

CRU Designed Inspection Grade Criteria MOTORS (continued)

		MOTORS	(continued)							
Asset #	Excellent	Very Good	Good	Fair	Poor					
	1	2	3	4	5					
#11	Concrete – large mass	Concrete – moderate mass			No defined base					
Score	1									
#12 Score #13	Metal Bases – no corrosion, no cracks, no hollow spots, level Documented Maintenance	Metal Bases – no corrosion, no cracks, minimum to no hollow spots, level	Metal Bases – some corrosion, no cracks, moderate hollow spots, level Incomplete Maintenance	Metal Bases – corrosion, no cracks, moderate hollow spots, levelness Issues	Metal Bases – heavy corrosion, cracks, large hollow spots, levelness issues No Documented Maintenance					
	History. No Failures.		History. Some Failures.		History. Multiple Failures.					
Score			3							
#14	Has not been rewound	N/A	Has been rewound 1 time	N/A	Has been rewound >1 time					
Score	1									
Total=	4	2	15	0	15					
Motor Asset A	Average Score = (To	tal Score 36/13) =		Motor Asset Average Score = (Total Score 36/13) = 2.7						

OVERALL SITE

Asset #	Excellent	Very Good	Good	Fair	Poor
	1	2	3	4	5
			IOR PAINT		
#1	Age < 4 years old.	Age <8 years old.	Age < 12 yrs. old.	Age < 16 yrs. old.	Age > 20 yrs. old.
Score	old.	2	old.	olu.	oid.
#2	No flaking	N/A	Some flaking	N/A	Excessive flaking
Score	1				
#3	No fading	N/A	Some fading	N/A	Excessive fading
Score	1				
#4	No weathering	N/A	Some weathering	N/A	Excessive weathering
Score	1				
#5	No cracking	N/A	Some cracking	N/A	Excessive cracking
Score	1				
		INTER	IOR PAINT		
#6	Age < 5 years old.	Age <10 years old.	Age < 15 years old.	Age < 20 years old.	Age > 30 years old.
Score		2			
#7	No flaking	N/A	Some flaking	N/A	Excessive flaking
Score	1				
#8	No fading	N/A	Some fading	N/A	Excessive fading
Score	1				
#9	No weathering	N/A	Some weathering	N/A	Excessive weathering
Score	1				
#10	No cracking	N/A	Some cracking	N/A	Excessive cracking
Score	1				

(Overall Site continued next page)

OVERALL SITE (continued)

Asset #	Excellent	Very Good	Good	Fair	Poor
	1	2	3	4	5
			SITE		
#11	No erosion	N/A	Signs/moderate of erosion	N/A	Excessive Erosion
Score			3		
#12	Secure	Semi-Secure	Secure potentially compromised	Security compromised	Not secure
Score	1				
#13	Fence like new	Fence good	Fence shows age	Fence needs repair	Fence compromised
Score			3		
#14	Gate like new	Gate good	Gate shows age	Gate needs repair or lightly damage	Gate compromised
Score		2			
#15	Locks like new	Locks good	Locks troublesome	Locks troublesome	Locks missing or don't lock
Score	1				
#16	Immaculate	Well maintained	Generally maintained	Fairly maintained – needs improvement	Not maintained
Score				4	
#17	Aesthetically pleasing	N/A	Needs aesthetic work	N/A	Aesthetics bad
Score			3		
#18	Proper drainage	N/A	Drainage issues developing	N/A	Drainage poor – imminent issues
Score			3		
#19	Proper Signage	Proper Signage starting to fade	Improper Signage – difficult to read	Improper Signage – unreadable need to replace	No Signage
Score	1				
Total =	11	6	12	4	0
Overall Sit	e Average Score :	= (Total Score 33	/19) =	1	.7

ELECTRICAL

ELECTRICAL								
Asset #	Excellent	Very Good	Good	Fair	Poor			
	1	2	3	4	5			
#1	90% of remaining life	75% of remaining life	50% of remaining life	25% of remaining life	0% of remaining life			
Score					5			
#2	Components no corrosion	Components discoloration	Components light corrosion	Components corrosion/heat damage	Components excessive corrosion/damage			
Score			3					
#3	No looseness of hardware	Evidence of possible hardware looseness	Evidence of previous repair	Evidence of numerous repair	Numerous repairs & bad Infrared			
Score					5			
#4	Proper labeling	Proper labeling - some labels missing	Poor labeling	Poor labeling - unreadable	Improper or No labeling			
Score		_	3					
#5	All wires in track	Wires orderly	Wires somewhat orderly	Wires unorganized & questionable	Wires in total disarray			
Score			3					
#6	Conduits sealed like new	Conduits sealed	Conduits unsealed – good condition	Conduits unsealed – poor condition	Conduits broken or nonexistent with exposed wiring			
Score			3					
#7	Infrared – no action required (∆0-14F)	Infrared continue to monitor (∆15- 39F)	Infrared repair at next overall outage (∆40- 99F)	Infrared alarm schedule next train outage monitor (Δ100- 179F)	Infrared high alarm immediate action required monitor (Δ> 180F)			
Score			3					
#8	Wiring no discoloration	Wiring slight discoloration	Wiring moderate discoloration	Wiring heavy discoloration – possible arcing/heat	Wiring heavy discoloration/corrosion – imminent failure			
Score		2						
Total =	0	2	15	0	10			
Electrical A	Average Score = (T	otal Score 27/8	8) =	;	3.3			

Raw Water Meter

STRUCTURAL INTEGRITY

Asset #	Excellent	Very Good	Good	Fair	Poor
	1	2	3	4	5
			NCRETE		I
#1	No cracking or spalling, sealer good	No cracking or spalling Needs sealing/coating.	Minor cracking or spalling. Needs coating	Moderate spalling & cracking Needs repair.	Major cracking, spalling. Needs repair.
Score			3		
		Bl	JILDING		
#2	Roof				
	No leaks. New.	No leaks. Almost like new.	No leaks. Normal aging.	Some leaking. Needs minor repair.	Excessive leaking. Needs major repair.
Score			N/A		
#3	HVAC				
	HVAC operational. < 5 years old.	HVAC operational. <10 years old.	HVAC operational. < 20 years old.	HVAC operational but needs repair. < 30 years old.	HVAC non- operational. > 30 years old.
Score			N/A		
#4	Structural Integrit	ЗУ			
	Sound. New.	Sound. Almost like new.	Sound. Normal aging.	Decaying. Repairs needed.	Decaying. Safety Issues. Repairs needed.
Score			3		
#5	Floor				
	Smooth. Level. Drains operational & sealed.	Smooth. Level. Drains operational.	Rough. Level. Drains operational.	Rough. Cracked. Drain issues.	Rough. Cracked. Drain non- operational.
Score		2			
#6	Penetrations				
	Filled. No degradation.	Filled. Minor degradation.	Filled. Moderate degradation.	Open.	Open causing equipment degradation.
Score		2			
#7	Doors/Windows				
	Solid. No drag. Easy to open.	Solid. Drags but easy to open.	Drags. Approaching repairs.	Needs repair. Drags hard to open or close.	Needs repair. Major difficulty in opening/closing.
Score			N/A		
#8	Ladders/Steps				
	Like new.	No loose members. Normal wear.	Above average wear.	Needs repair.	OHSA non- compliant. Safety Issues.
Score			3		
Total Score	0	4	9	0	0
Structural Int	egrity Average Sco	ore = (Total Score 1	3/5)	2.6	

PIPING

	PIPING							
Asset #	Excellent	Very Good	Good	Fair	Poor			
	1	2	3	4	5			
#1	Age < 10 years	Age < 20 years	Age < 40 years	Age < 60 years	Age < 75 years			
Score			3					
#2	No leaks.	N/A	Previous signs of leaks.	N/A	Drips/Leaks.			
Score			3					
#3	Adequate support.	N/A	Questionable support	N/A	Inadequate support			
Score	1							
#4	No stresses.	N/A	Minor stresses.	N/A	Major stresses.			
Score	1							
#5	No looseness.	Questionable looseness.	Minor looseness.	Moderate looseness.	Major looseness.			
Score	1							
#6	No corrosion.	N/A	Some corrosion.	N/A	Excessive Corrosion.			
Score					5			
#7	Pipe hangers restraints optimal.	Pipe hangers restraints adequate.	Pipe hangers restraints adequate. Minimum restraint.	Pipe hangers restraints minimal support. Inadequate restraint.	Pipe hangers restraints unsupported. Loose fittings/bolts. Unrestrained.			
Score			3					
#8	Labeled.	N/A	Some/Poorly labeled.	N/A	Not labeled.			
Score					5			
#9	Alignment optimal.	Alignment adequate.	Alignment fair	Alignment bad.	Gross misalignment.			
Score		2			_			
Total Score =	3	2	9	0	10			
Piping A	sset Average Score	= (Total Score 24/9)) =	2.6				

VALVES/ACTUATORS

#1 Score	Excellent 1 Age < 5 years	Very Good 2	Good	Fair	Poor
Score	1 Age < 5 years	2			1 001
Score	Age < 5 years	_	3	4	5
		Age < 10 years	Age < 15 years	Age < 20 years	Age < 40 years
#2			3		
	Correct application.	N/A	Questionable application.	N/A	Wrong application.
Score	1				
#3	Still Manufactured? – Yes	N/A	N/A	N/A	Still Manufactured? - NO
Score	1				
#4	AWWA spec. – Yes	N/A	N/A	N/A	AWWA spec NO
Score	1				
#5	Operates properly? – Yes	N/A	Operates occasionally.	N/A	Operates properly? - NO
Score	1				
#6	Internal Leakage? None	Internal Leakage? Possible	Internal Leakage? Some	Internal Leakage? Excessive	Internal Leakage? Bad/Failure imminent
Score	1				
#7	External leakage? None	External leakage? A little	External leakage? Some	External leakage? Excessive	External leakage? Bad/Failure imminent
Score	1				
#8	Corrosion? None	Corrosion? A little	Corrosion? Some	Corrosion? Degraded.	Corrosion? Excessive
Score			3		
#9	Operation? Manual & Auto? Yes	N/A	N/A	N/A	Operation? Manual & Auto? NO
Score	1				
#10	Safety Features? Yes	N/A	N/A	N/A	Safety Features? NO
Score	1				
#11	Visual Position Indication? Yes	N/A	N/A	N/A	Visual Position Indication? NO
Score	1				
#12	Remote Position Indication? Yes	N/A	N/A	N/A	Remote Position Indication? NO
Score	1				
Total Score =	10	0	6	0	0
Valves/A	ctuators Asset Avera	age Score = (Total S	core 16/12)	1.3	

METER

	METER						
Asset	Excellent	Very Good	Good	Fair	Poor		
#	1	2	3	4	5		
#1	90% of remaining life	75% of remaining life	50% of remaining life	25% of remaining life	0% of remaining life		
Score					5		
#2	Meets original output	With 5% original output	Within 15% Within 20% original output original output		Off > 20% original output		
Score	1						
#3	Leakage within spec	N/A	Leakage questionable	N/A	Leakage out of spec		
Score			3				
#4	Documented Maintenance History. No Failures.	N/A	Incomplete Maintenance History. Some Failures.	N/A	No Documented Maintenance History. Multiple Failures.		
Score			3				
Total =	1	0	6	0	5		
Pump A	Pump Asset Average Score = (Total Score 12/4) = 3.0						

	MOTORS					
Asset #	Excellent Very Good		Good Fair		Poor	
	1	2	3	4	5	
#1	90% of remaining	75% of	50% of	25% of	0% of remaining	
	life	remaining life	remaining life	remaining life remaining life		
Score			3			
#2	Amperage 90%	Amperage 95%	Amperage full	Amperage 5%	Amperage 10%	
	or less of			over	over	
	nameplate		_			
Score			3			
#3	Infrared – no	Infrared continue	Infrared repair at	Infrared alarm	Infrared high	
	action required	to monitor (∆15-	next overall	schedule next	alarm immediate	
	(∆0-14F)	39F)	outage (∆40-	train outage	action required	
			99F)	monitor (∆100-	monitor (Δ >	
				179F)	180F)	
Score	1					
#4	Bearings – no	Bearings – no	Bearings – noise	Bearings – noise	Bearings – noise	
	noise within 25%	noise within 50%	within allowable	up to 10% over	> 10% allowable	
	of allowable	of allowable	vibration	allowable	vibration	
Caara	vibration	vibration	N/A	vibration		
Score #5	Dooring + 2500	Dooring + F000	Bearing < 10,000	Dooring + 20 000	Dooring	
#3	Bearing < 2500	Bearing < 5000	•	Bearing < 20,000	Bearing >	
Score	hours hours hours 20,0000 hours N/A					
#6	Bearing – normal	N/A	Bearing – warm	N/A	Bearing -hot	
#0	heat	IN/A	Dealing – Wallii	IN/A	bearing –not	
Score	110at		N/A			
#7	Bearing	Bearing	Bearing	Bearing	Bearing	
	Lubrication	Lubrication	Lubrication	Lubrication	Lubrication never	
	scheduled &	scheduled &	scheduled &	scheduled & but	scheduled or	
	performed	performed most	performed	never performed	performed	
	religiously	of time	sometimes	· ·	•	
Score	ğ i		N/A			
#8	Grease no	N/A	Grease some N/A		Grease	
	leakage		leakage		excessive	
			leakage			
Score	N/A					
#9	Coupling	N/A N/A		N/A	Coupling	
	Alignment within				Alignment out of	
	allowable range				allowable range	
Score	1					
#10	Belts - new,	Belts - < 3 yrs.	Belts – up to 5	Belts – over 5	Belts – over 5	
	properly	old, properly	yrs. old,	yrs. old,	yrs. old, not	
	tensioned,	tensioned,	tensioned,	tensioned,	tensioned,	
	checked per	checked	checked	squealing, not	squealing, not	
	scheduled	periodically	sometimes	checked	checked	
	frequency					
Score			N/A			

(Motors continued next page)

CRU Designed Inspection Grade Criteria MOTORS (continued)

	MOTORS (continued)							
Asset #	Excellent	Very Good	Good	Fair	Poor			
	1	2	3	4	5			
#11	Concrete – large	Concrete –	Concrete –	Concrete –	No defined base			
	mass	moderate mass	minimal	eroding				
			mass/fair grout	mass/poor bad				
				grouting & spalling				
Score			N/A					
#12	Metal Bases – no	Metal Bases – no	Metal Bases –	Metal Bases –	Metal Bases –			
	corrosion, no	corrosion, no	some corrosion,	corrosion, no	heavy corrosion,			
	cracks, no hollow	cracks, minimum	no cracks,	cracks, moderate	cracks, large			
	spots, level	to no hollow	moderate hollow	hollow spots,	hollow spots,			
		spots, level	spots, level	levelness Issues	levelness issues			
Score	N/A							
#13	Documented	N/A	Incomplete	N/A	No Documented			
	Maintenance		Maintenance		Maintenance			
	History. No		History. Some		History. Multiple			
	Failures.		Failures.		Failures.			
Score			3					
#14	Has not been	N/A	Has been	N/A	Has been			
	rewound		rewound 1 time		rewound >1 time			
Score	1							
Total=	3	0	9	0	0			
Motor Asset	Motor Asset Average Score = (Total Score 12/6) = 2.0							

OVERALL SITE

Asset #	Excellent	Very Good	Good	Fair	Poor		
	1	2	3	4	5		
EXTERIOR PAINT							
#1	Age < 4 years old.	Age <8 years old.	Age < 12 yrs. old.	Age < 16 yrs. old.	Age > 20 yrs. old.		
Score					5		
#2	No flaking	N/A	Some flaking	N/A	Excessive flaking		
Score					5		
#3	No fading	N/A	Some fading	N/A	Excessive fading		
Score			3				
#4	No weathering	N/A	Some weathering	N/A	Excessive weathering		
Score					5		
#5	No cracking	N/A	Some cracking	N/A	Excessive cracking		
Score					5		
INTERIOR PAINT							
#6	Age < 5 years old.	Age <10 years old.	Age < 15 years old.	Age < 20 years old.	Age > 30 years		
Score							
#7	No flaking	N/A	me flaking	N/A	Excessive flaking		
Score							
#8	No fading	N/A	Some fa	N/A	Excessive fading		
Score			/ \				
#9	No weathering	N/A	Some weathering	N/A	Excessive weathering		
Score							
#10	No cracking	N/A	Some cracking	N/A	Excessive cracking		
Score							

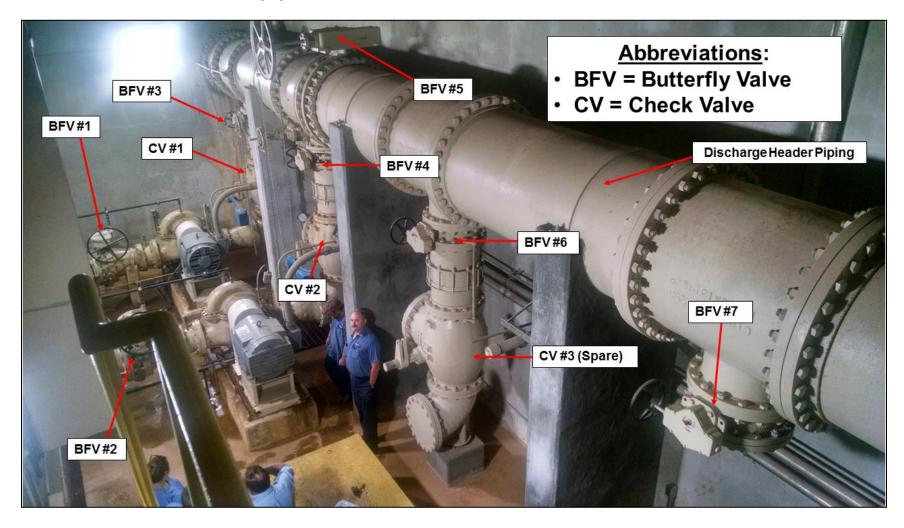
(Overall Site continued next page)

OVERALL SITE (continued)

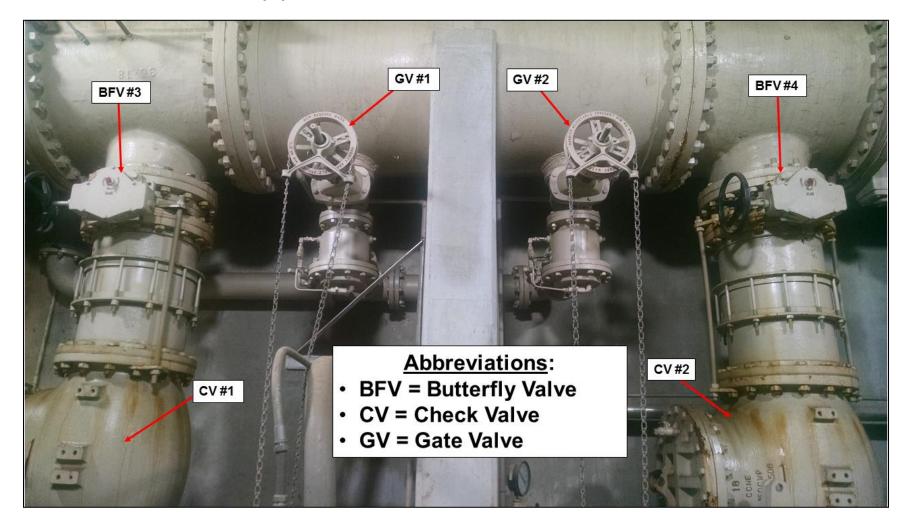
Score #13 Fence like new Fen	N/A ni-Secure ce good	3 SITE Signs/moderate of erosion Secure potentially compromised N/A Fence shows age N/A	N/A Security compromised Fence needs repair	Excessive Erosion Not secure		
Score 1 #12 Secure Sen Score #13 Fence like new Fen Score	ni-Secure ce good	Signs/moderate of erosion Secure potentially compromised N/A Fence shows age N/A	Security compromised Fence needs	Erosion Not secure		
Score 1 #12 Secure Sen Score #13 Fence like new Fen Score	ni-Secure ce good	Secure potentially compromised N/A Fence shows age N/A	Security compromised Fence needs	Erosion Not secure		
#12 Secure Sen Score #13 Fence like new Fen Score	ce good	Secure potentially compromised N/A Fence shows age N/A	compromised Fence needs	Not secure		
#12 Secure Sen Score #13 Fence like new Fen Score	ce good	potentially compromised N/A Fence shows age N/A	compromised Fence needs			
Score #13 Fence like new Fen	ce good	potentially compromised N/A Fence shows age N/A	compromised Fence needs			
#13 Fence like new Fen		N/A Fence shows age N/A	Fence needs	Fence		
#13 Fence like new Fen		N/A Fence shows age N/A		Fence		
#13 Fence like new Fen		Fence shows age N/A		Fence		
Score		age N/A		rence		
	e good	N/A	repair	compromised		
	e good			compromised		
WIT Gate like new Gate	e good	Gate shows age	Gate needs	Gate		
		Cate shows age	repair or lightly	compromised		
			damage	Compromised		
Score		N/A				
#15 Locks like new Loc	ks good	Locks	Locks	Locks missing		
	Ü	troublesome	troublesome	or don't lock		
Score	N/A					
#16 Immaculate Wel	I	Generally	Fairly	Not maintained		
mai	ntained	maintained	maintained –			
			needs			
			improvement			
Score	21/2	3	N1/A	A (1 (1 1 1		
#17 Aesthetically	N/A	Needs aesthetic	N/A	Aesthetics bad		
pleasing Score		work 3				
	N/A	Drainage issues	N/A	Drainaga poor		
#18 Proper drainage	IN/A	developing	IN/A	Drainage poor – imminent issues		
Score 1		GOVOIOPING		minimiont issues		
#19 Proper Signage Prop	per	Improper	Improper	No Signage		
	nage	Signage –	Signage –	Oignago		
	ting to fade	difficult to read	unreadable			
	9 11 1110		need to replace			
Score			•	5		
Total = 1	0	9	0	25		
Overall Site Average Score = (To	tal Score 35/	/10) =	3.	.5		

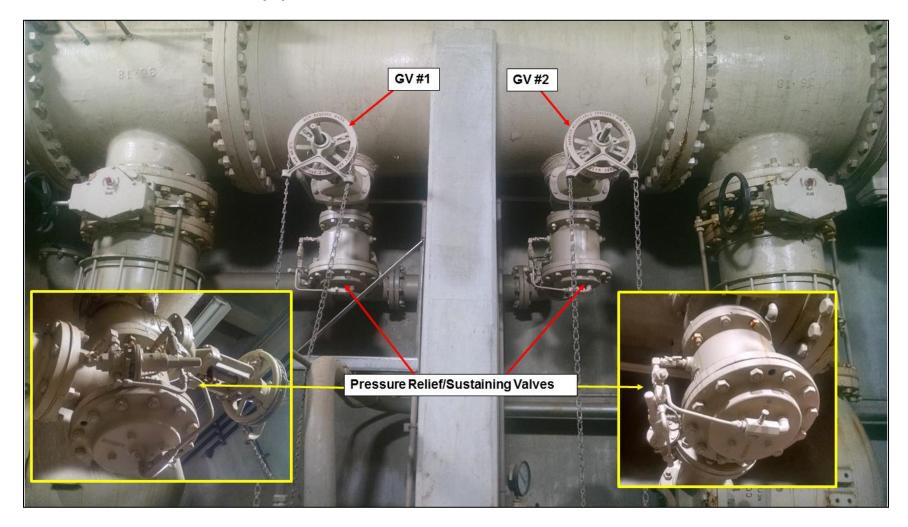

ELECTRICAL

ELECTRICAL							
Asset #	Excellent	Very Good	Good	Fair	Poor		
	1	2	3	4	5		
#1	90% of remaining life	75% of remaining life	50% of remaining life	25% of remaining life	0% of remaining life		
Score		2					
#2	Components no corrosion	Components discoloration	Components light corrosion	Components corrosion/heat damage	Components excessive corrosion/damage		
Score		2					
#3	No looseness of hardware	Evidence of possible hardware looseness	Evidence of previous repair	Evidence of numerous repair	Numerous repairs & bad Infrared		
Score	11						
#4	Proper labeling	Proper labeling - some labels missing	Poor labeling	Poor labeling - unreadable	Improper or No labeling		
Score	1						
#5	All wires in track	Wires orderly	Wires somewhat orderly	Wires unorganized & questionable	Wires in total disarray		
Score	1						
#6	Conduits sealed like new	Conduits sealed	Conduits unsealed – good condition	Conduits unsealed – poor condition	Conduits broken or nonexistent with exposed wiring		
Score		2					
#7	Infrared – no action required (∆0-14F)	Infrared continue to monitor (Δ15- 39F)	Infrared repair at next overall outage (∆40- 99F)	Infrared alarm schedule next train outage monitor (Δ100- 179F)	Infrared high alarm immediate action required monitor (Δ> 180F)		
Score	1						
#8	Wiring no discoloration	Wiring slight discoloration	Wiring moderate discoloration	Wiring heavy discoloration – possible arcing/heat	Wiring heavy discoloration/corrosion – imminent failure		
Score	1						
Total =	6	5	0	0	0		
Electrical A	Average Score = (T	otal Score 11/8	8) =	· 	1.3		


Performance Testing

See attached report.


Equipment Identification Reference: Raw Water Pumps, Motors & Piping


Equipment Identification Reference: Raw Water Valves

Equipment Identification Reference: Raw Water Valves

Equipment Identification Reference: Raw Water Valves

PUMP INFORMATION

Raw Water Pump #1

Pump	Aurora - Horizontal Split Case Centrifugal
Туре	411-BF
Serial#	83-4872-1
RPM	1175
GPM	4200
Ft. Hd.	88
Size	10 X 12 X 18

PUMP INFORMATION

Raw Water Pump #2

Pump	Aurora - Horizontal Split Case Centrifugal
Туре	411-BF
Serial#	89-16009
RPM	1175
GPM	4200
Ft. Hd.	88
Size	10 X 12 X 18

MOTOR INFORMATION

Raw Water Pump #1 MOTOR

Motor	US Electrical Motors
HP	125
Frame	445T
Туре	RE
Volt	460
Amps	151
RPM	1185
Design	В
Code	G
Service Factor	1.15
Shaft End Bearing	6220-J
Opposite End Bearing	6313-J
ID	CJ2720203 840280-792

MOTOR INFORMATION

Raw Water Pump #2 MOTOR

Motor	US Electrical Motors
HP	125
Frame	445T
Туре	RE
Volt	460
Amps	151
RPM	1185
Design	В
Code	G
Service Factor	1.15
Shaft End Bearing	6220-J
Opposite End Bearing	6313-J
ID	CJ2720203 840281-792

Check Valve #1

Manufacturer	CCNE
Туре	Swing Check Valve Outside Lever and Weight
Size	18"
Working Pressure	1500
Class	AWWA C508
Function	Check Valve RW Pump #1 Discharge

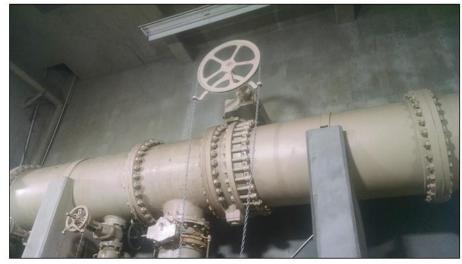
Check Valve #2

Manufacturer	CCNE
Туре	Swing Check Valve Outside Lever and Weight
Size	18"
Working Pressure	1500
Class	AWWA C508
Function	Check Valve RW Pump #2 Discharge

Check Valve #3 (Spare)

Manufacturer	CCNE
Туре	Swing Check Valve Outside Lever and Weight
Size	18"
Working Pressure	1500
Class	AWWA C508
Function	Spare Check Valve if RWP #3 installed

Manufacturer	American Darling
Туре	Butterfly
Size	18"
Laying Length	8"
Actuator	Gear
Function	Suction Valve for RW Pump #1


Manufacturer	American Darling
Туре	Butterfly
Size	18"
Laying Length	8"
Actuator	Gear
Function	Suction Valve for RW Pump #2

Manufacturer	DeZurik
Туре	Butterfly
Size	18"
Laying Length	8"
Actuator	Gear
Function	Discharge Valve for RW Pump #1

Manufacturer	DeZurik
Туре	Butterfly
Size	18"
Laying Length	8"
Actuator	Gear
Function	Discharge Valve for RW Pump #2

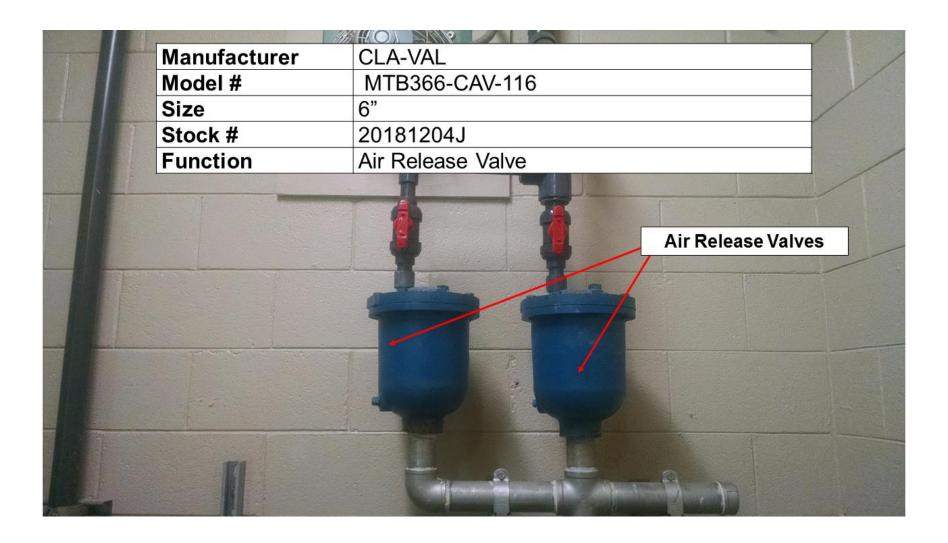
Manufacturer	DeZurik
Type	Butterfly
Size	36"
Laying Length	12"
Actuator	Chain Wheel / Gear
Function	Discharge Header Valve

Butterfly Valve #6 (Spare)

Manufacturer	DeZurik
Туре	Butterfly
Size	18"
Laying Length	8"
Actuator	Gear
Function	Discharge Valve for RW Pump #3
	(pump #3 not installed)

Butterfly Valve #7 (spare)

Manufacturer	DeZurik
Туре	Butterfly
Size	18"
Laying Length	8"
Actuator	Gear
Function	Discharge Valve for RW Pump #4 (pump #4 not installed)

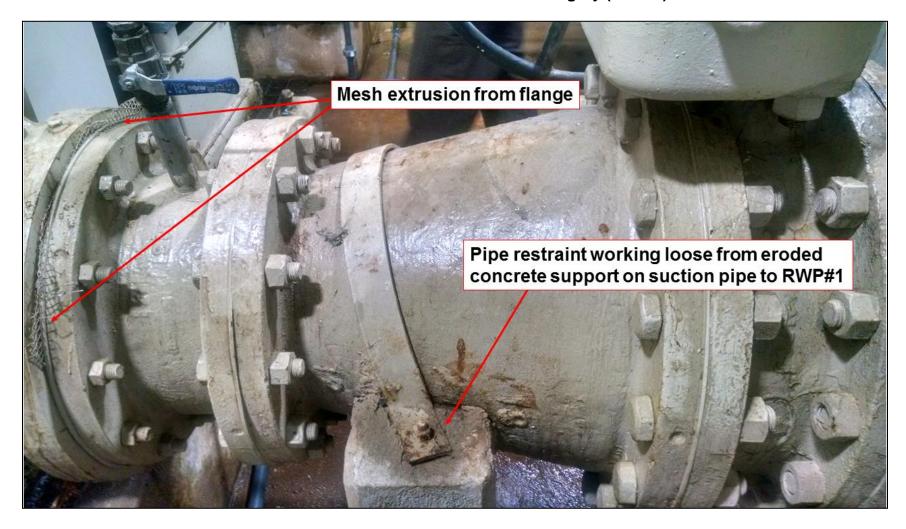

Gate Valve #1

Manufacturer	American Darling
Туре	Gate
Size	8"
Laying Length	8"
Actuator	Chain Wheel
Function	Tap off Header for Pressure Relief/Sustaining

Gate Valve #2

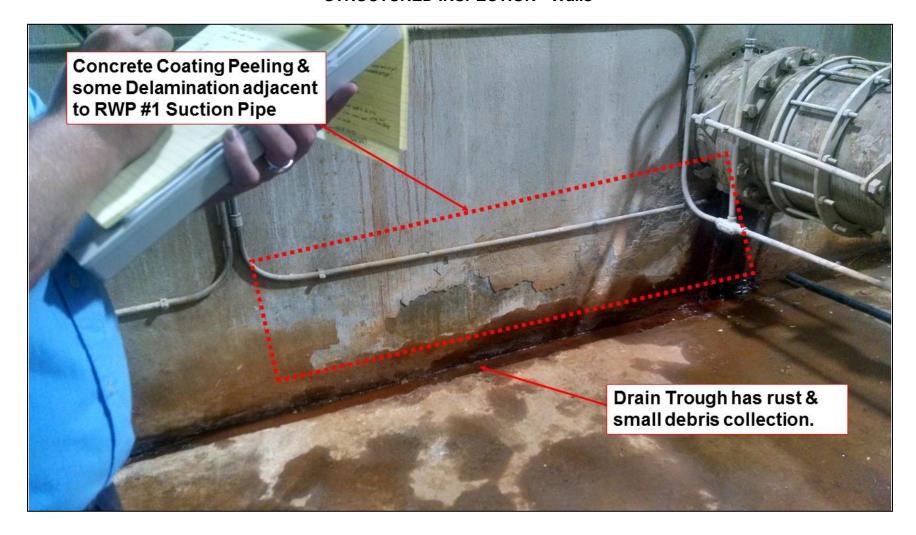
Manufacturer	American Darling
Туре	Gate
Size	8"
Laying Length	8"
Actuator	Chain Wheel
Function	Tap off Header for Pressure Relief/Sustaining

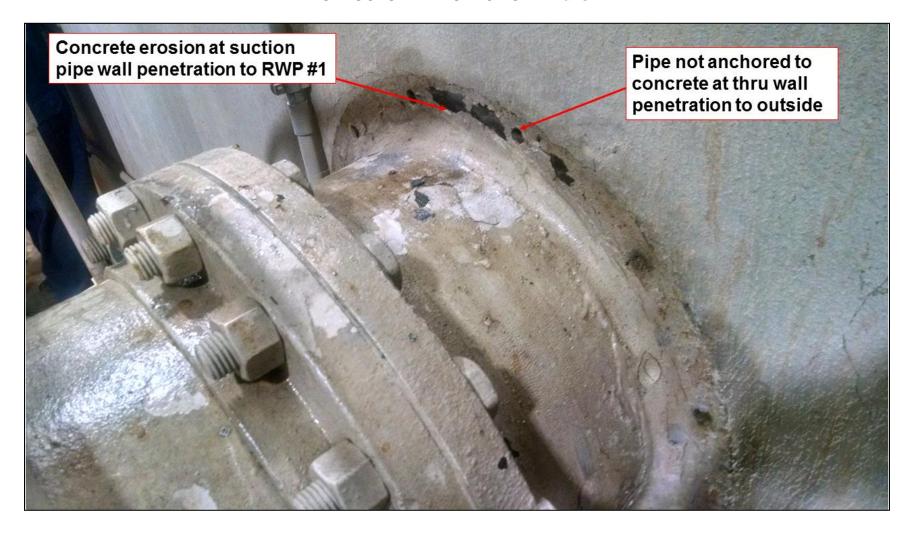


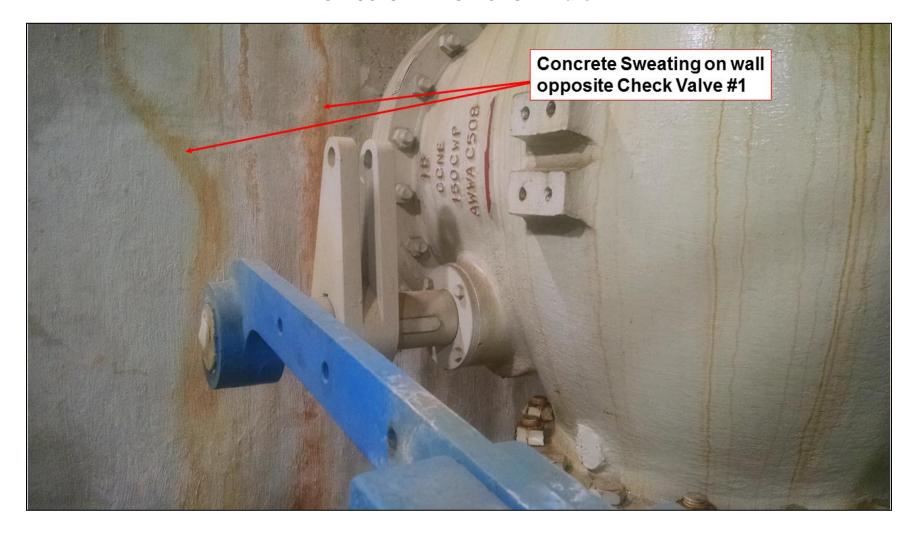

AIR COMPRESSOR INFORMATION

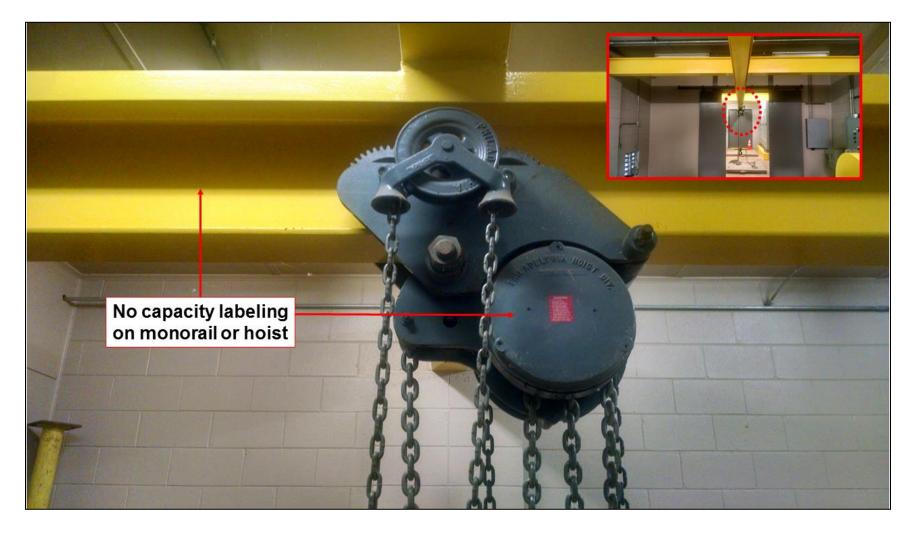
Compressor	Ingersoll-Rand (Quantity = 2)
Mod #:	V 255
Serial#:	30 T
Belts (3 each)	A 78

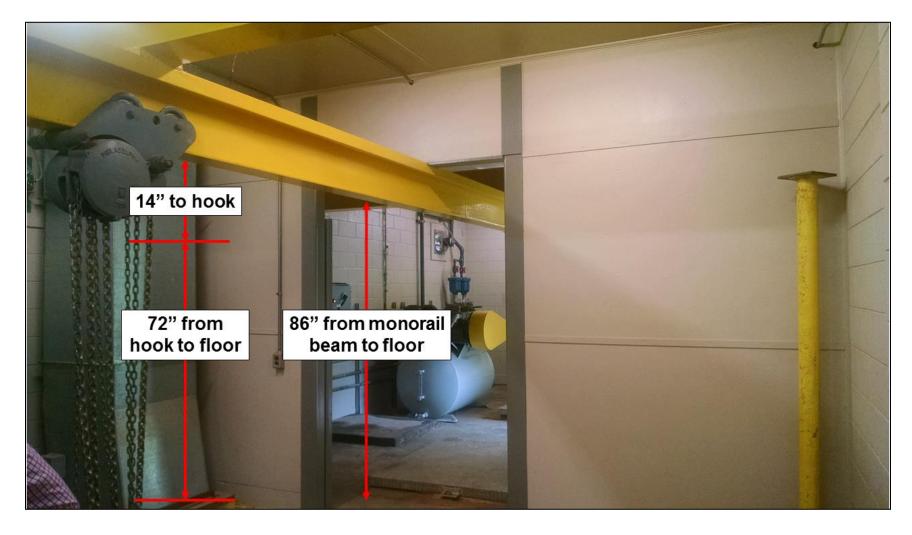
Motor	Baldor (Quantity = 2)
Cat #:	M32187
Spec#	36B01Y46
Frame:	184T
HP	5
Serial#	F683
Volts:	208/230/460
Amps:	14.8/14.7
RPM	1725

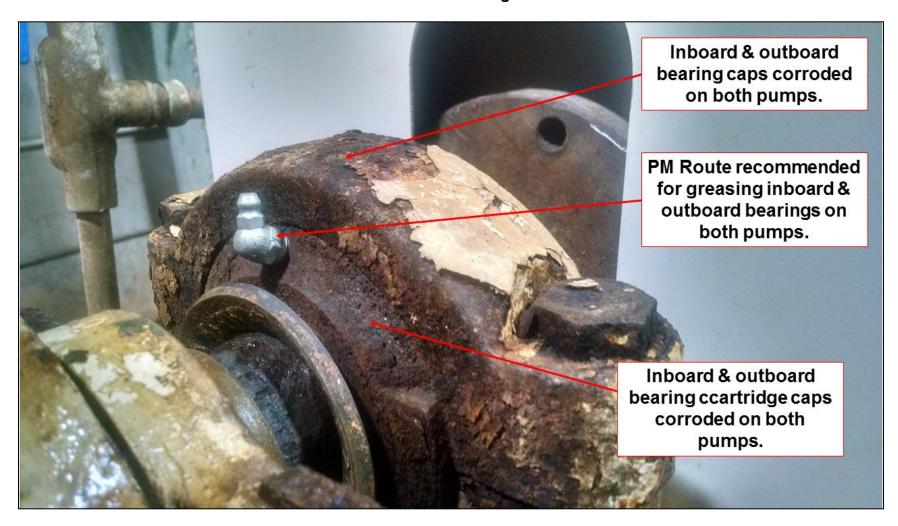


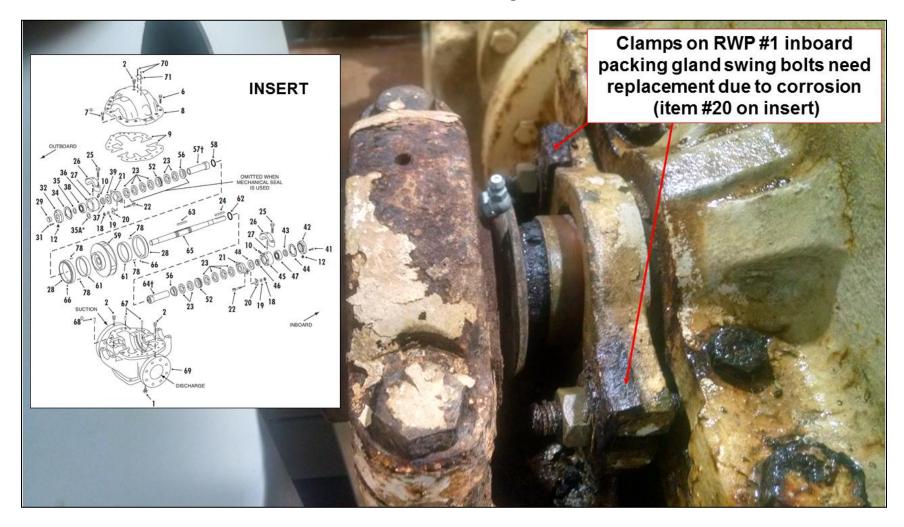


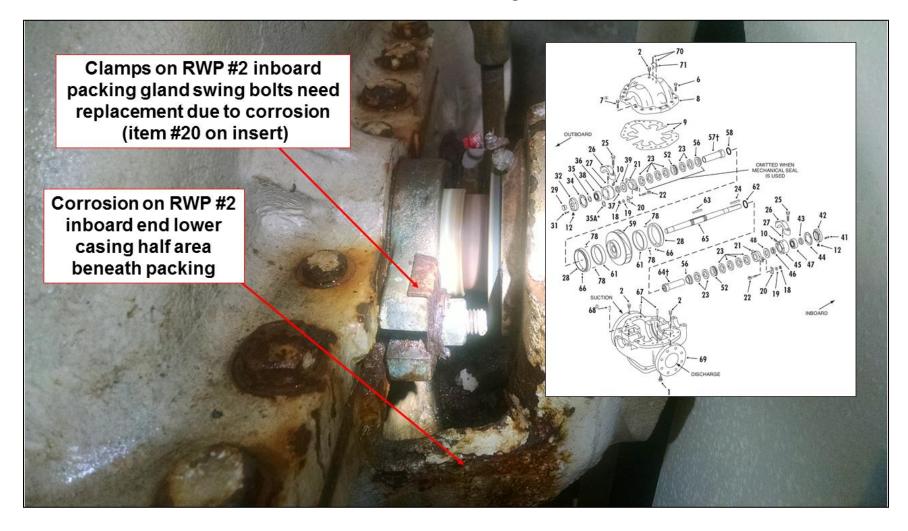

STRUCTURED INSPECTION - Walls

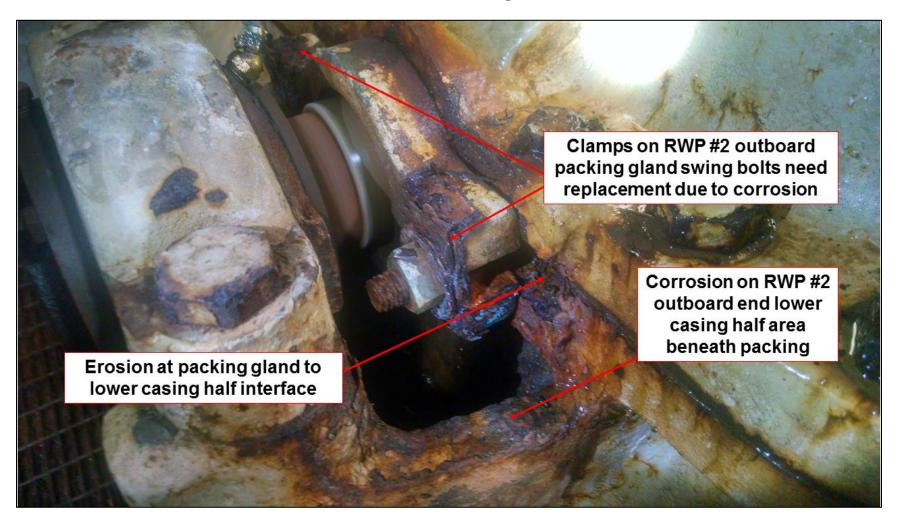

STRUCTURED INSPECTION - Walls

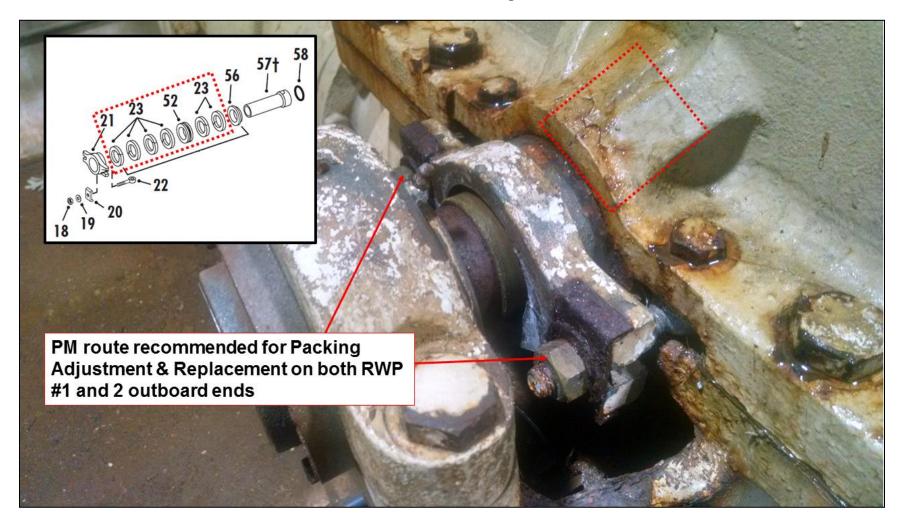

STRUCTURED INSPECTION - Walls



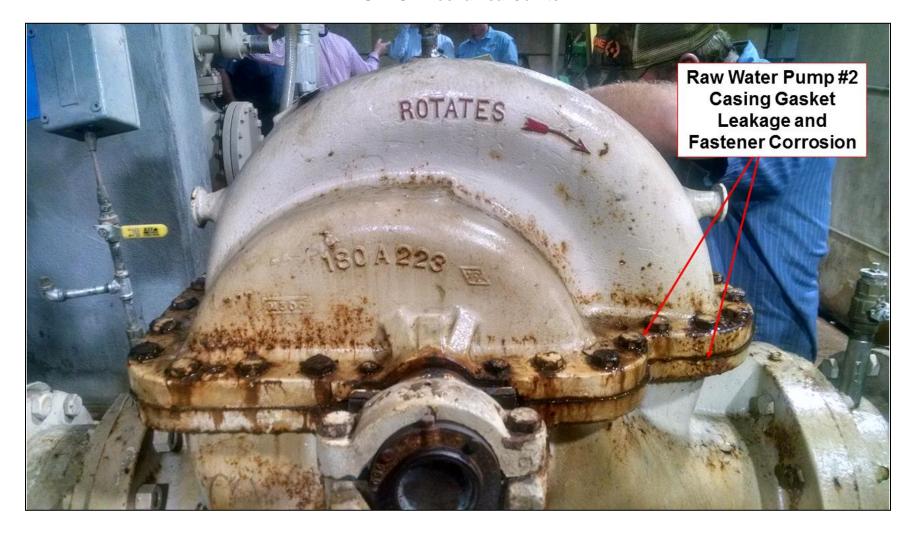



PUMPS - Bearings


PUMPS - Packing


PUMPS - Packing

PUMPS - Packing


PUMPS - Packing

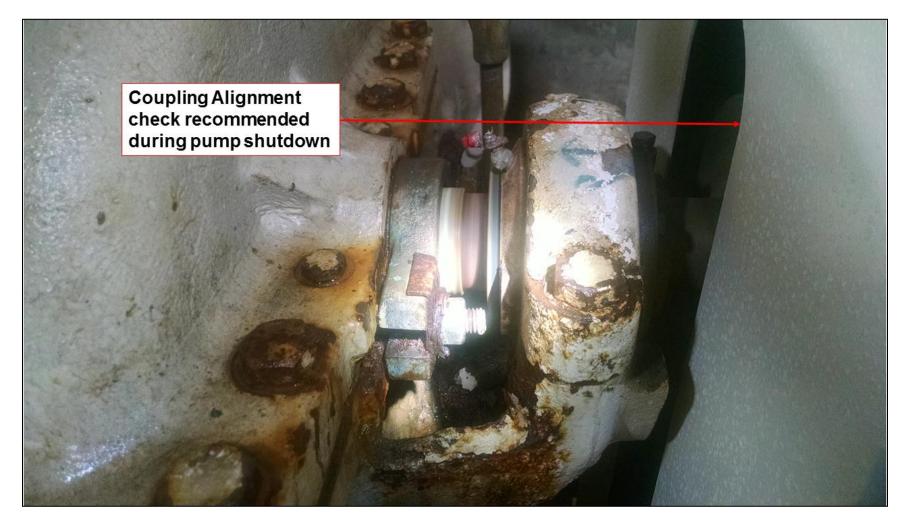
PUMPS - Mechanical Joints

PUMPS - Mechanical Joints

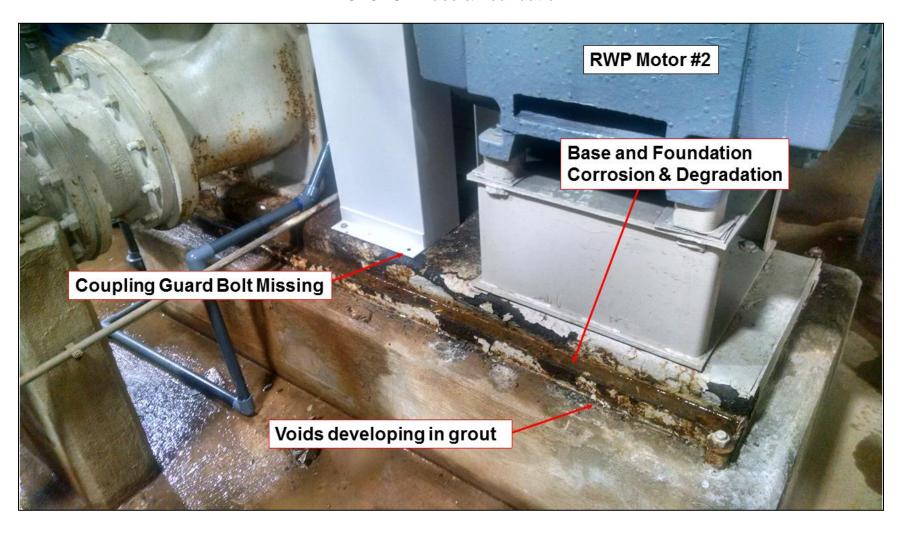
PUMPS - Mechanical Joints

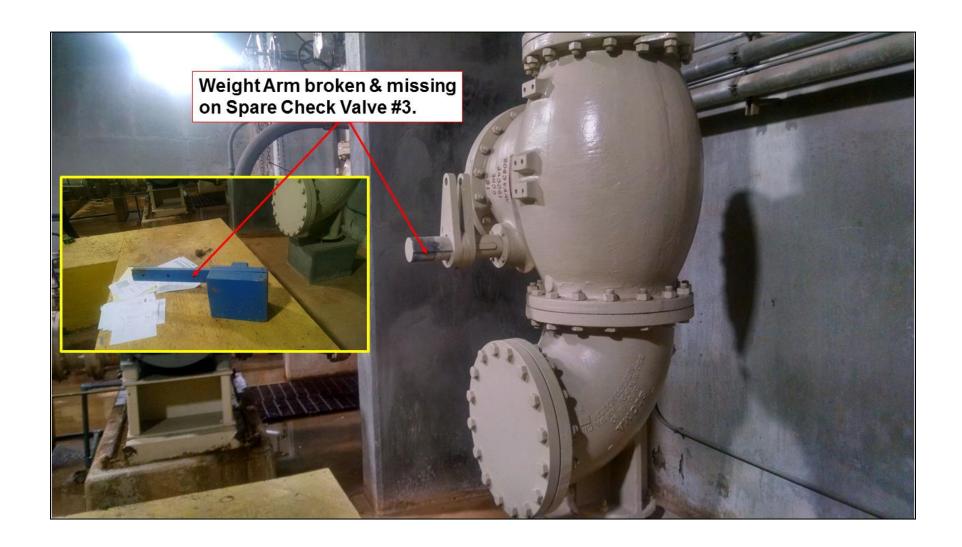
PUMPS – Base & Foundation

(Same condition exists on RWP#1 base & foundation)

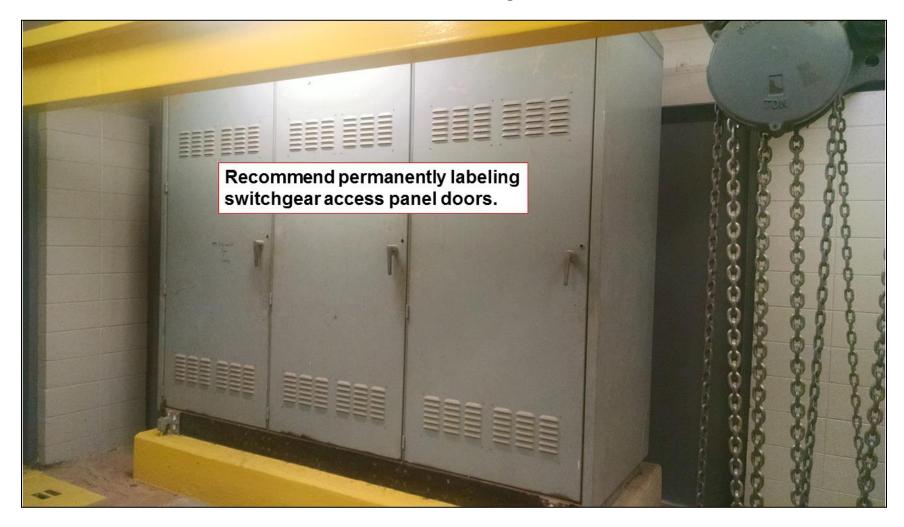


PUMPS – Base & Foundation


(Same condition exists on RWP#1 base & foundation)


MOTORS - Coupling

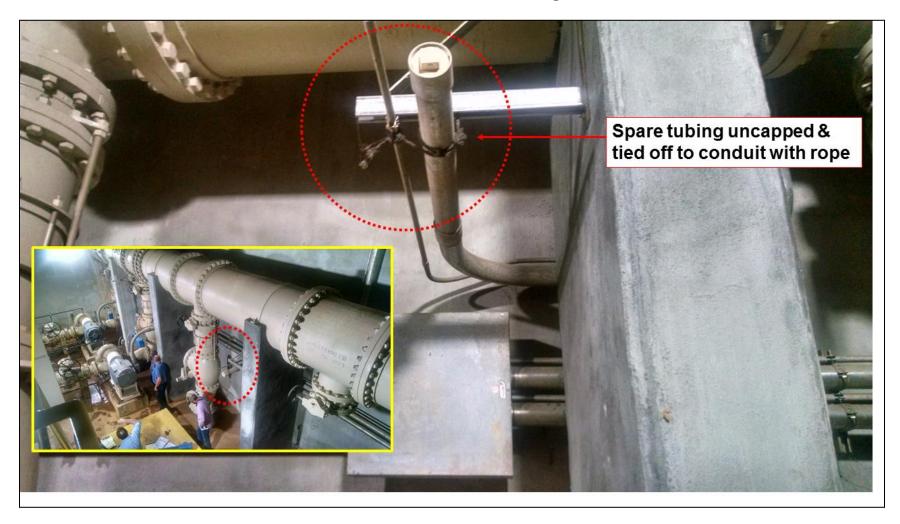
MOTORS – Base & Foundation

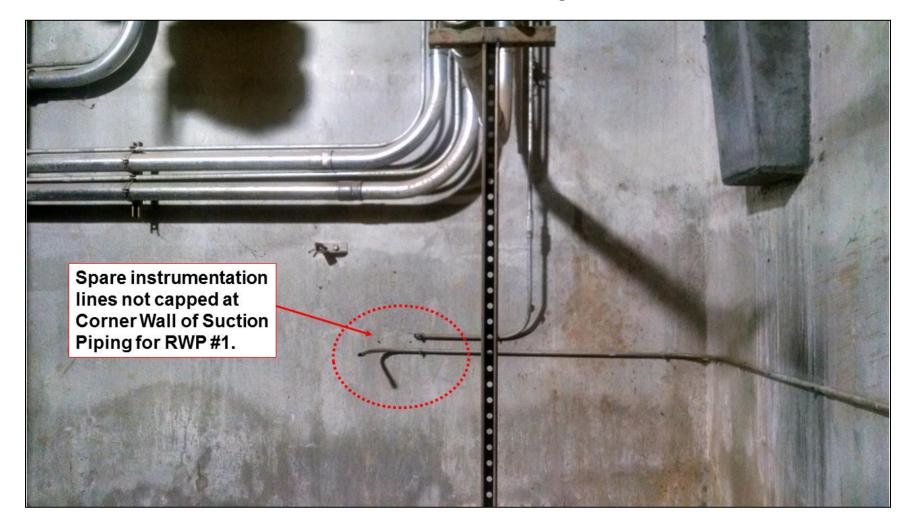

VALVES

Air Compressor

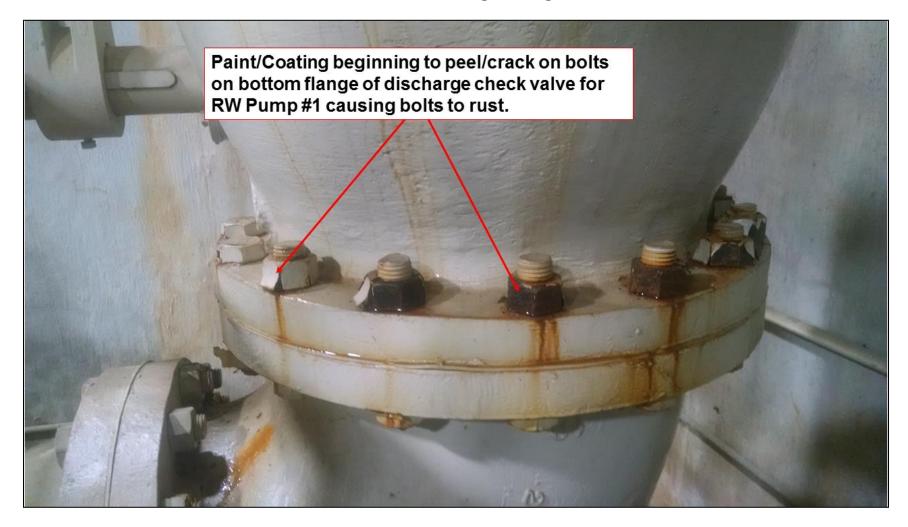
Electrical - Switchgear

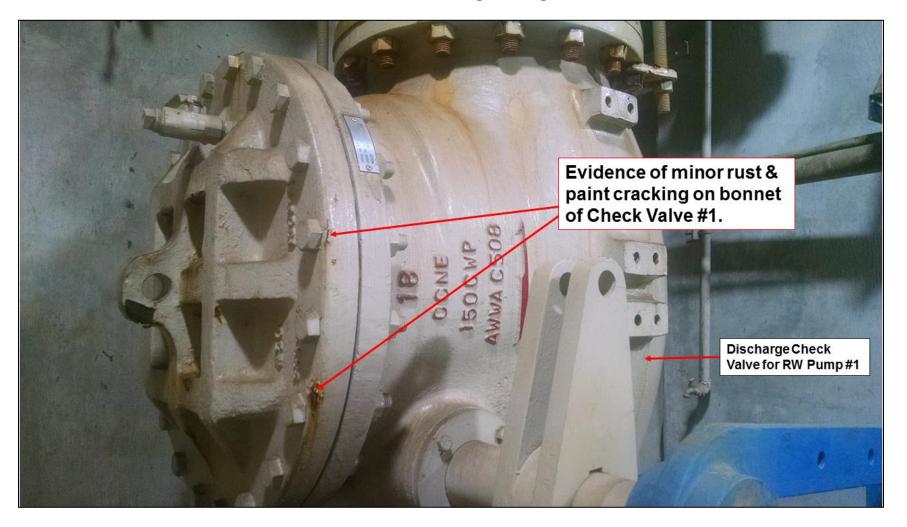

Electrical – Indicator Panel

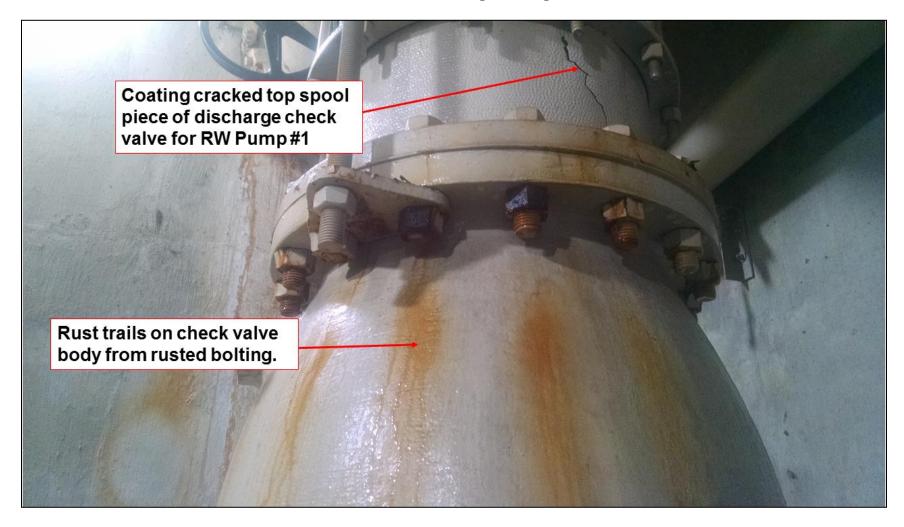

Electrical – Emergency Generator

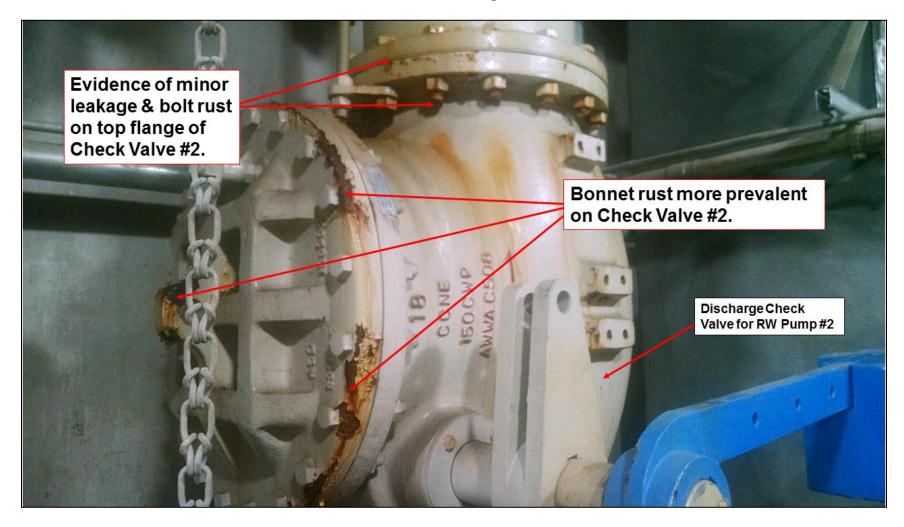

Electrical – Emergency Generator

INSTRUMENTATION - Tubing

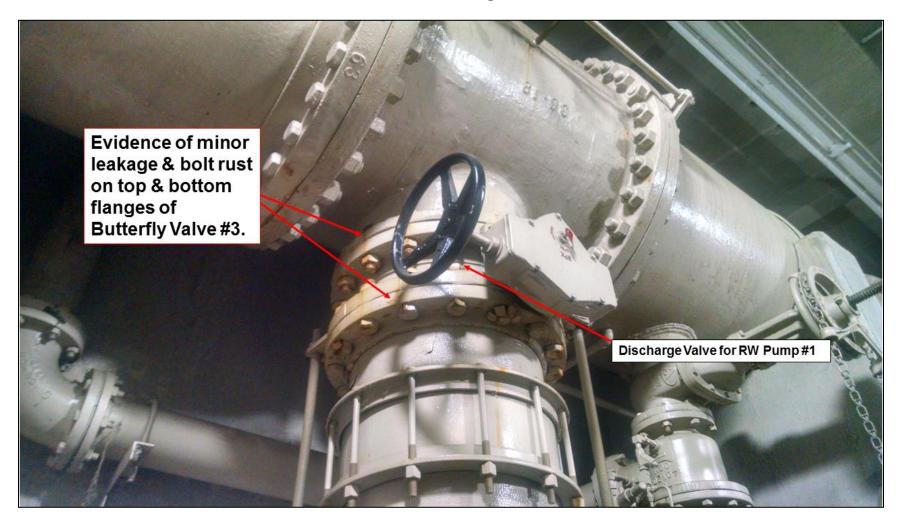

INSTRUMENTATION - Tubing

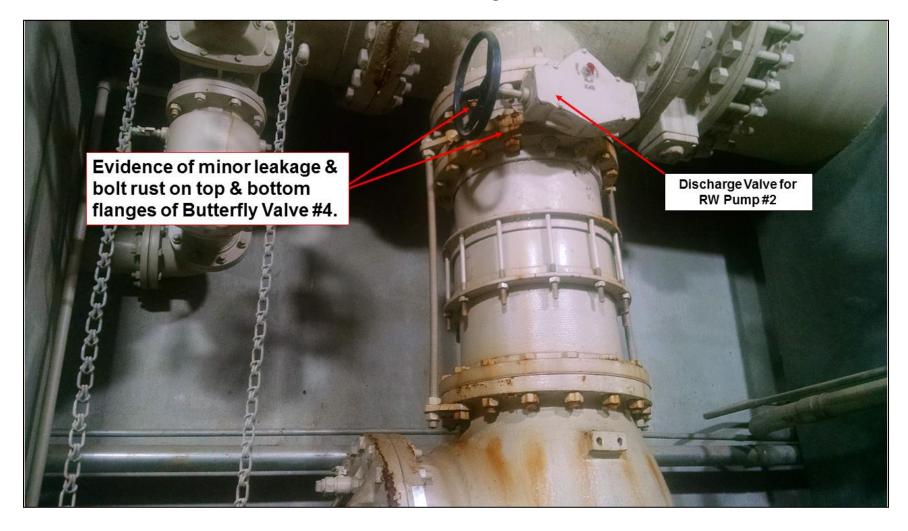

INSTRUMENTATION – Sump Level Alarm


PIPING – Painting/Coating


PIPING – Painting/Coating

PIPING – Painting/Coating


PIPING - Flanges

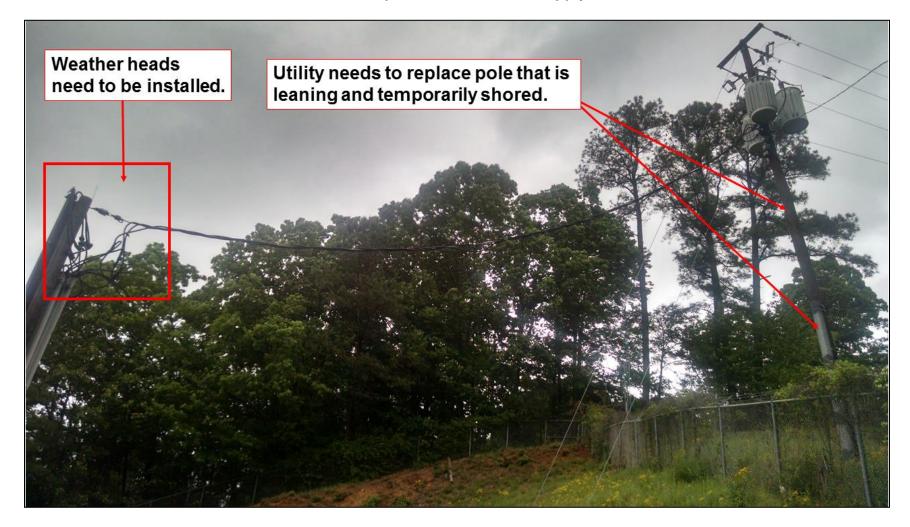

PIPING - Flanges

PIPING - Flanges


PIPING - Flanges

PIPING - Flanges

PIPING - Flanges


Overall Site Inspection - Safety

Overall Site Inspection - Safety

Overall Site Inspection – Electrical Supply to Site

Overall Site Inspection – Drainage, Security, Grade

Overall Site Inspection - Drainage, Security, Grade

Overall Site Inspection - Drainage, Security, Grade

Overall Site Inspection - Drainage, Security, Grade

Overall Site Inspection – Light Fixture

3.b Capital Improvement Plan

Montgomery County Public Utilities – FY-19 Capital Improvement Program

	FY-19 CAPITAL IMPROVE	FY-19	FY-20	FY-21	FY-22	FY-23	FY-24	FY-25	FY-26	FY-27	FY-28	10-YR CIP			
			Unrestrict	ed Fund Balance	\$5,717,495	\$5,119,195	\$4,184,455	\$3,929,415	\$2,900,875	\$1,968,335	\$1,170,295	\$942,255	\$1,126,715	\$1,330,175	
			Current Capit	al Contributions:	\$900,000	\$900,000	\$900,000	\$900,000	\$900,000	\$900,000	\$900,000	\$900,000	\$900,000	\$900,000	
			Availa	ble Capital Funds	\$6,617,495	\$6,019,195	\$5,084,455	\$4,829,415	\$3,800,875	\$2,868,335	\$2,070,295	\$1,842,255	\$2,026,715	\$2,230,175	TOTAL
	Project	Total Costs	Grant Funding	MC Funding											
1	Chemcial Feed Rehabilitation	\$600,000	\$250,000	\$350,000	\$350,000										\$350,000
2	Station #1 & #2 Rehabilitation	\$2,100,000	\$1,000,000	\$1,100,000	\$550,000	\$550,000									\$1,100,000
3	Fairway Shores Water Main Replacement	\$1,525,000	\$412,500	\$1,112,500	\$482,500	\$482,500									\$965,000
4	Raw Water Pump Station (RWPS) Improvements	\$1,500,000	\$750,000	\$750,000	\$115,800	\$634,200									\$750,000
5	Wadeville Elevated Tank (Debt Issuance)	\$2,500,000	\$0	\$2,500,000		\$168,040	\$168,040	\$168,040	\$168,040	\$168,040	\$168,040	\$168,040	\$168,040	\$168,040	\$1,512,360
6	Station #5 Rehabilitation	\$316,000	\$0	\$316,000			\$316,000								\$316,000
7	High Service Pump #3 Addition	\$290,000	\$0	\$290,000			\$290,000								\$290,000
8	WTP Generator Replacement	\$165,000	\$0	\$165,000			\$165,000								\$165,000
9	Station #3 - PRV Replacements	\$216,000	\$0	\$216,000			\$216,000								\$216,000
10	1 MG Clearwell	\$1,080,000	\$0	\$1,080,000				\$540,000	\$540,000						\$1,080,000
11	WTP Misc Facility Improvements	\$666,000	\$0	\$666,000				\$666,000							\$666,000
	Biscoe Industrial Park - 12" Water Main	\$1,109,000	\$0	\$1,109,000				\$554,500	\$554,500						\$1,109,000
13	Biscoe Industrial Park - Booster Pump Station	\$1,140,000	\$0	\$1,140,000					\$570,000	\$570,000					\$1,140,000
	Biscoe Industrial Park - Elevated Tank	\$2,920,000	\$1,000,000	\$1,920,000						\$960,000	\$960,000				\$1,920,000
	Station #8 & #12 Replacements	\$480,000	\$240,000	\$240,000								\$240,000			\$240,000
	WTP Sedimentation Basin Improvements	\$615,000	\$0	\$615,000								\$307,500	\$307,500		\$615,000
	Station #9 Rehabilitation	\$221,000	\$0	\$221,000									\$221,000		\$221,000
18	Lake Tillery Elevated Tank	\$1,940,000	\$0	\$1,940,000										\$970,000	\$970,000
	Totals:	\$19,383,000	\$3,652,500	\$15,730,500	\$1,498,300	\$1,834,740	\$1,155,040	\$1,928,540	\$1,832,540	\$1,698,040	\$1,128,040	\$715,540	\$696,540	\$1,138,040	\$13,625,360

FY-19 CIP PROJECT DATA MCPU

PROJECT TITLE	Raw Water Pump Station (RWPS) Improvements	
DEPARTMENT	Public Utilities	
PRIORITY	High	
TYPE OF PROJECT	2 - Maintenance / Replacement	

PROJECT DESCRIPTION

This project replaces numerous components in the raw water pump station - pumps, motors, valves (check, butterfly, and gate), generator, MCC and controls, SCADA Improvements, and safety improvements.

PROJECT JUSTIFICATION

Due to the age of the raw water pump station and its components, many are in need of significant repair and/or replacement. Instead of replacing individual components, at various times, this project replaces and/or upgrades the mechanical and electrical infrastructure for this station to improve the reliability and performance.

Project Alternatives

Continue operating the RWPS and repairing individual components as they fail.

Operating Impact / Other Comments

This project will improve overall operation, reliability, and safety of the RWPS.

CAPITAL COST BREAKDOWN	Prior to FY-19	FY-19	FY-20	FY-21	FY-22	FY-23	Future Years
Planning & Engineering		\$115,800	\$84,000				
Purchase							
Construction			\$1,182,000				
Equipment							
Contingency			\$118,200				
Other							
Total Project Costs	\$0	\$115,800	\$1,384,200	\$0	\$0	\$0	\$0

FUNDING SOURCE(S)	Prior to FY-19	FY-19	FY-20	FY-21	FY-22	FY-23	Future Years
Debt Financing (private)							
Debt Financing (public)							
General Fund							
Public Utility Fund		\$115,800	\$634,200				
GO Bonds							
Grants			\$750,000				
Other							
Total Current Funding	\$0	\$115,800	\$634,200	\$0	\$0	\$0	\$0
Total Grant Funding	\$0	\$0	\$750,000	\$0	\$0	\$0	\$0

TOTAL PROJECT COSTS:

\$1,500,000

Raw Water Intake - Debrief Overall Score Sheet

Excellent	Very Good	Good	Fair	Poor
≤ 1.0	1.1 to 2.0	2.1 to 3.0	3.1 to 4.0	4.1 to 5.0

Structural Integrity Total Average Score = 25/8	3.1
Piping Asset Total Average Score = 25/9	2.7
Valves/Actuators Asset Total Average Score = 17/10	1.7
Pump Asset Total Average Score = 33/12	2.7
Motor Asset Total Average Score = 36/13	2.7
Overall Site Total Average Score = 33/19	1.7
Electrical Total Average Score = 27/8	3.3

Areas of concern for Raw Water Intake are Structural Integrity (Fair) and overall Electrical (Fair). Structural Integrity (Fair):

- ➤ Concrete cracked/chipped on support for RWP #2 discharge piping.
- ➤ Concrete coating peeling & some delamination adjacent to RWP #1 suction pipe.
- > Concrete coating peeling & some delamination on wall behind discharge piping between RWP #1 & 2.
- ➤ Paint/Coating beginning to peel/crack on bonnet of discharge check valves for RWP #1 & 2.
- ➤ Coating cracked top spool piece of discharge check valve for RW Pump #1
- > Drain trough has rust & small debris collection.
- ➤ Concrete sweating at wall of suction piping between RWP #1 & 2.
- ➤ Concrete sweating on wall opposite Check Valve #1.
- Concrete erosion at suction pipe wall penetration to RWP #1.
- Pipe not anchored to concrete at thru wall penetration to outside.
- ➤ Concrete support bowed for suction piping blanked with blind flange (intended for RW Pump #4 if installed).
- ➤ No capacity labeling on monorail or hoist.
- ➤ Monorail beam support required for pulling pumps and/or motors no tagging or reference label when use is required.
- > Grating being used to compensate for floor slope.
- > Floor erosion & some debris present.

Electrical (Fair):

> Duke Energy needs to replace pole that is leaning and temporarily shored.

Raw Water Intake – Debrief (continued)

Electrical (Fair): (continued)

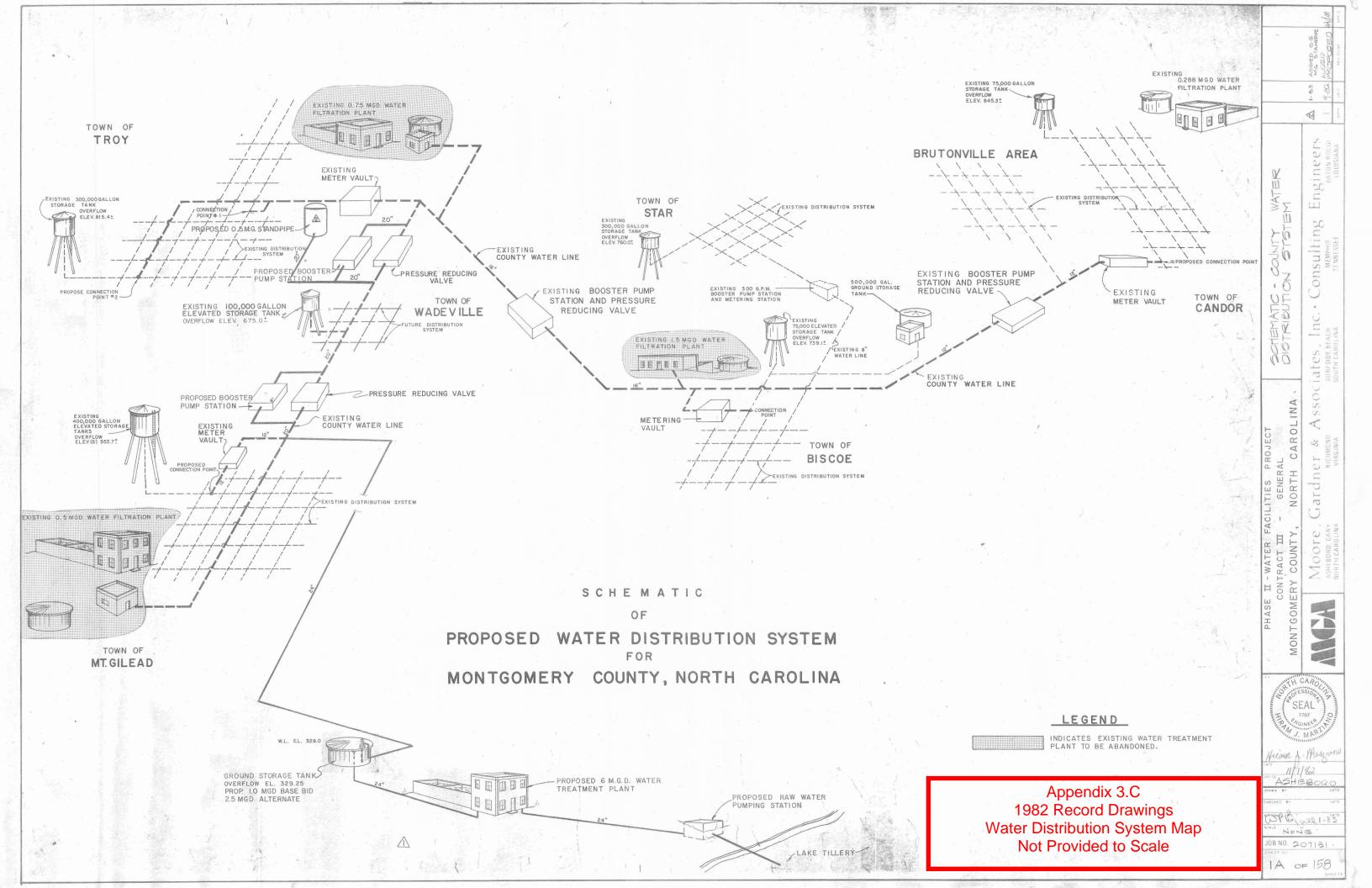
- ➤ Weather heads need to be installed on site power supply from main utility pole.
- Switchgear access panel doors not labeled.

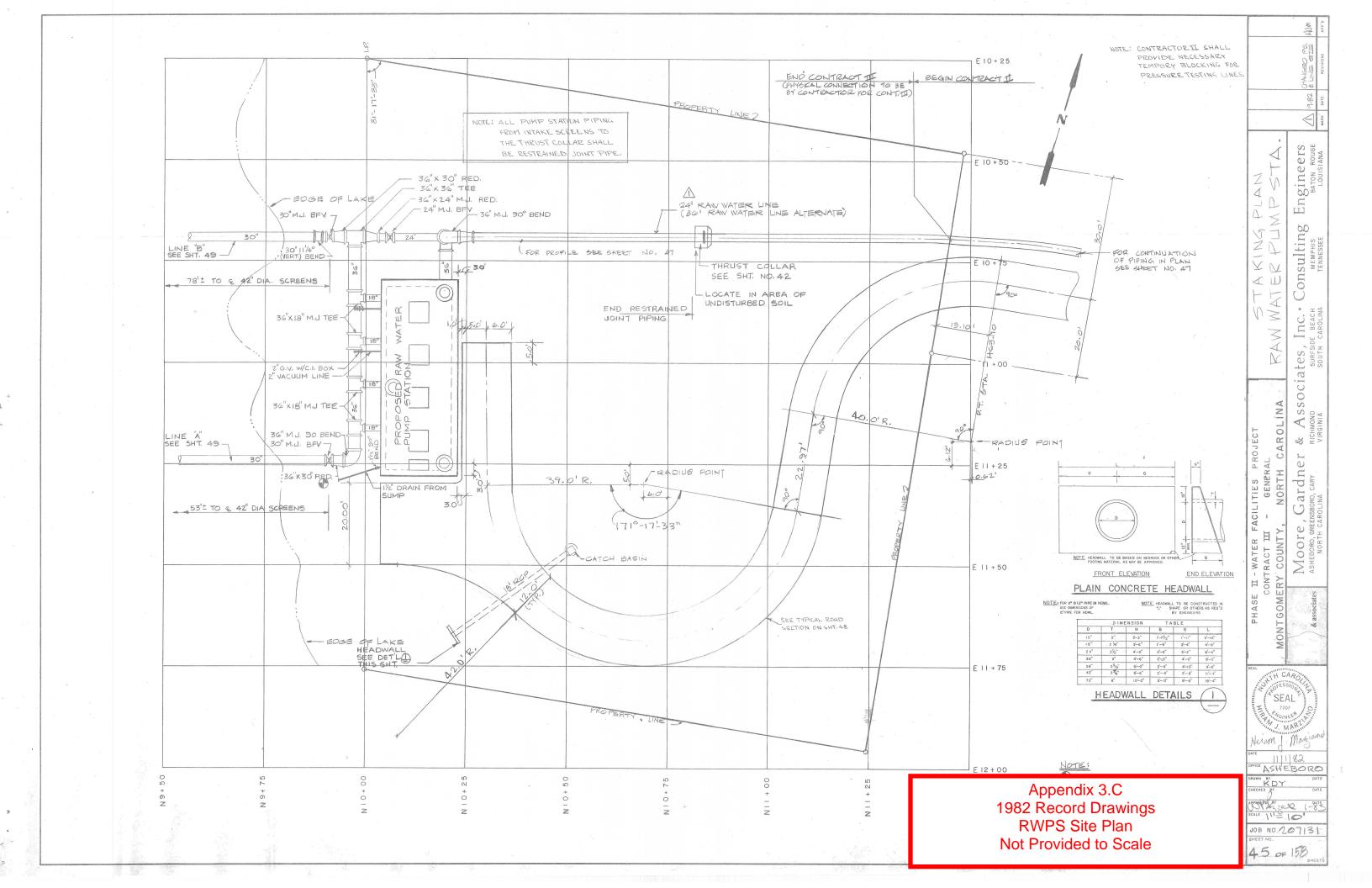
<u>Piping</u> (Good): Exceptions: Pipe restraint working loose from eroded concrete support on suction pipe to RWP#1. Mesh extrusion from suction flange to RW Pump #1. Minor leakage & bolt rust on top flange of Check Valves #1 & #2. Spare instrumentation lines not capped. Minor rust & paint cracking on bonnet of Check Valves #1 & #2 - bonnet rust more prevalent on Check Valve #2. Minor leakage & bolt rust on discharge elbow flanges of Check Valve #2. Minor leakage & bolt rust on top & bottom flanges of Butterfly Valves #3 &4. Minor leakage & bolt rust on bottom of discharge elbow flange for RW Pump #1.

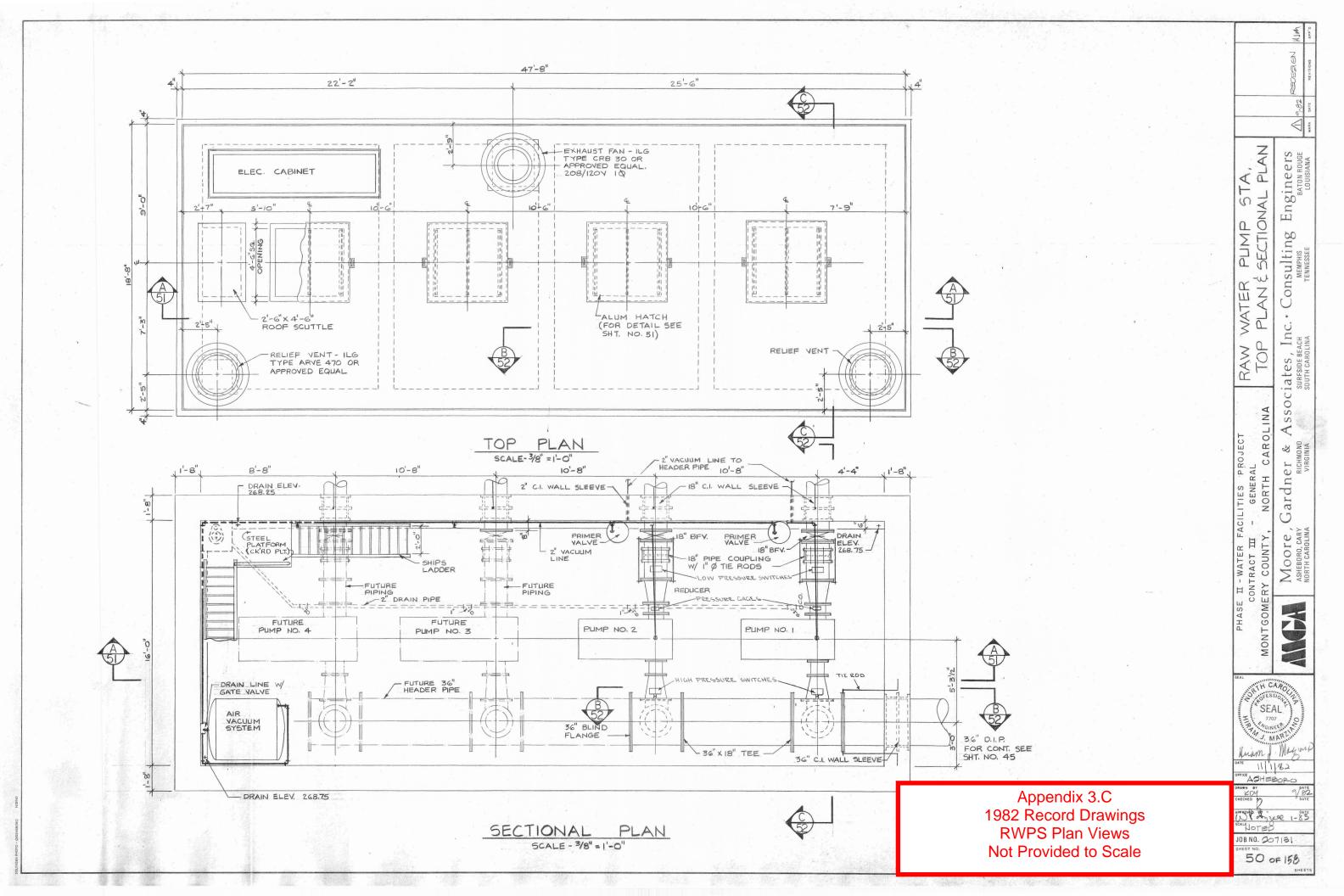
<u>Valves/Actuators</u> (Very Good): Exceptions: Weight Arm broken & missing on Spare Check Valve #3. <u>Pumps</u> (Good): Aurora - Horizontal Split Case Centrifugal Model 411-BF. Exceptions: RWP #1 & 2 casing gasket leakage and fastener corrosion. RWP #1 & 2 clamps on packing gland swing bolts need replacement due to corrosion. RWP #1 & 2 base and foundation corrosion & degradation. Corrosion on RWP #2 inboard end lower casing half area beneath packing. Some casing gasket extrusion on both RWP #1 and #2. Corrosion on RWP #1 & 2 inboard/outboard end bearing clamps & outside of bearing cartridges.

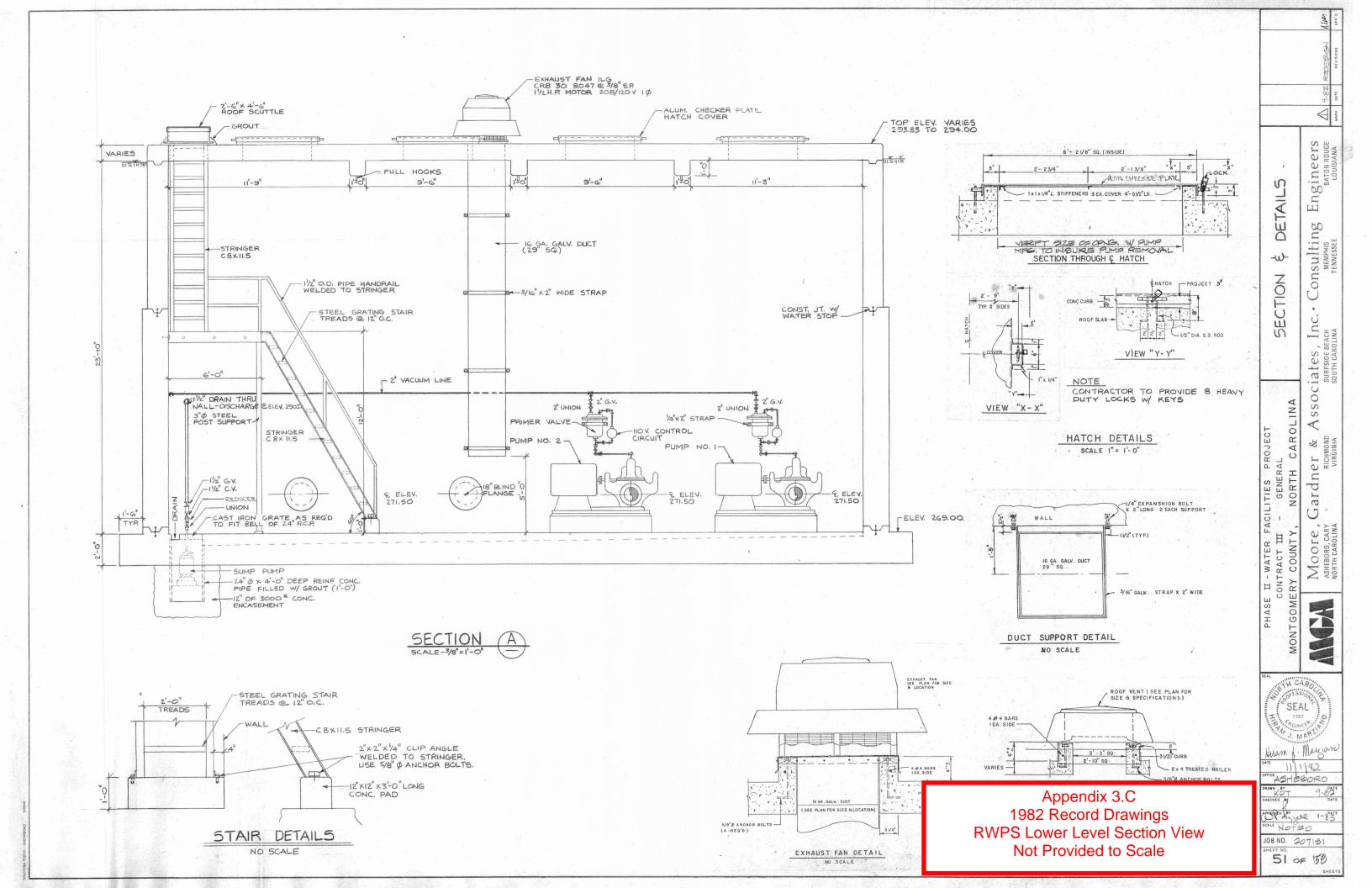
<u>Motors</u> (Good): US Electrical Motors Frame 445T. Exceptions: RWP Motors #1 & #2 - base and foundation corrosion & degradation, coupling guard bolt missing, voids developing in grout.

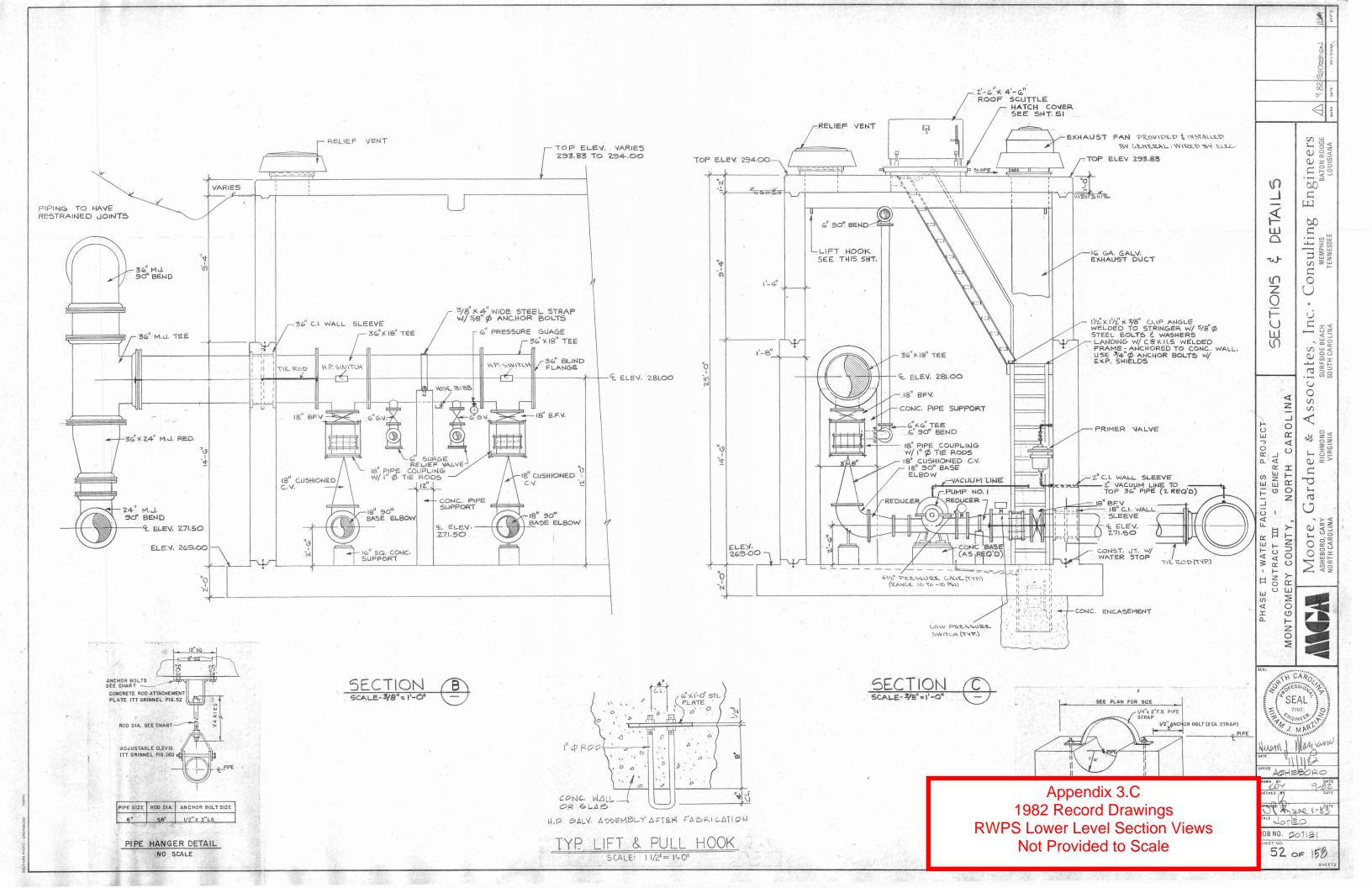
Air Compressors: (Good). Ingersoll Rand Model V255. No exceptions.

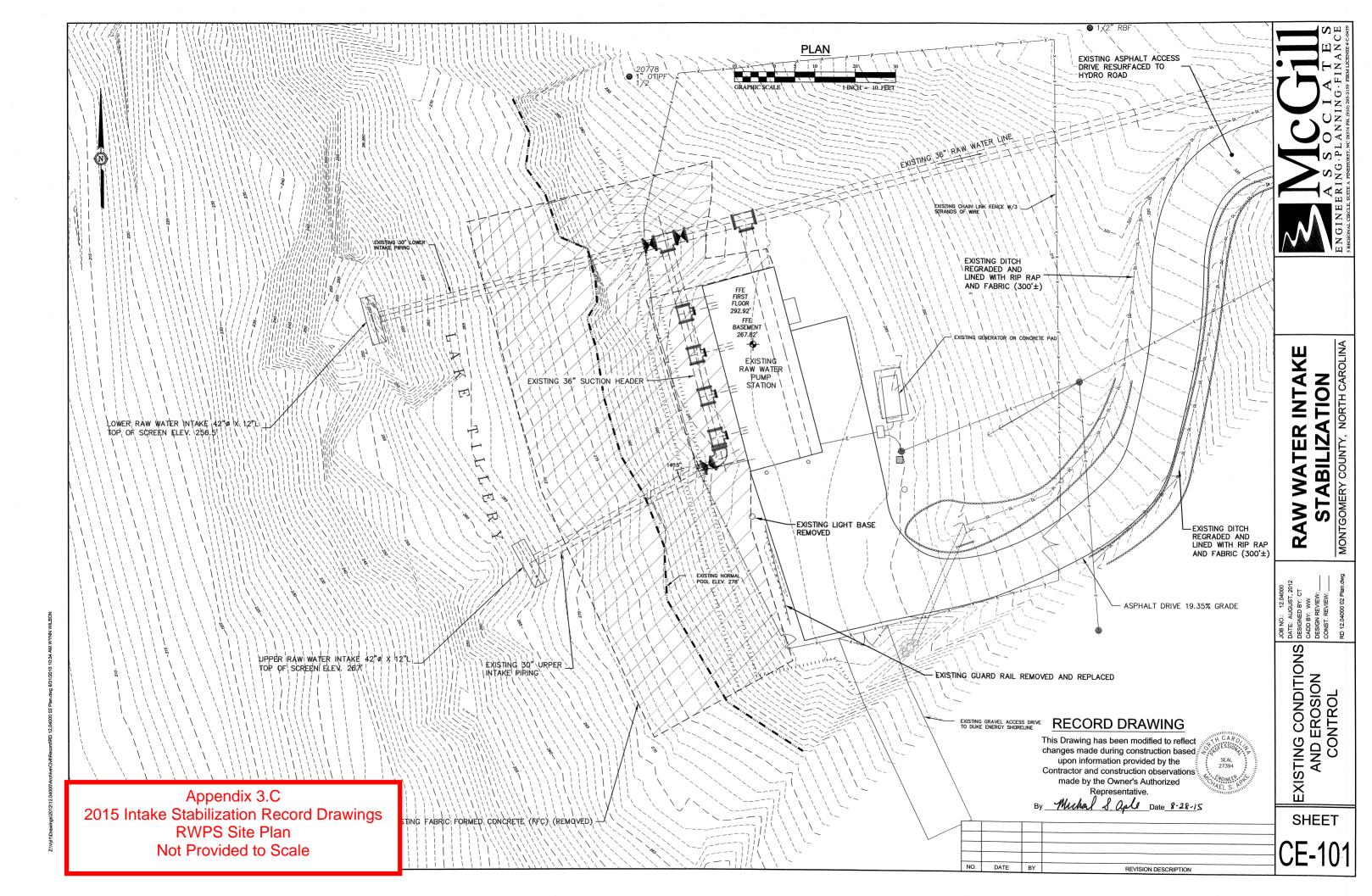

Overall Site (Very Good): Exceptions: Slope erosion. Vegetation coming up through gravel at intake area, encroaching security fence and at switchgear rear door area. Labeling & instructions on emergency generator indicator lights & controls beginning to fade. Emergency Generator electrical access panel rusted. Stairs to lower level beneath access hatch need to be labeled head bump hazard. Each equipment maintenance access hatch to lower level needs safety label. Need to verify functional sump level alarm. Light fixture cover open allowing birds or wasps to nest.

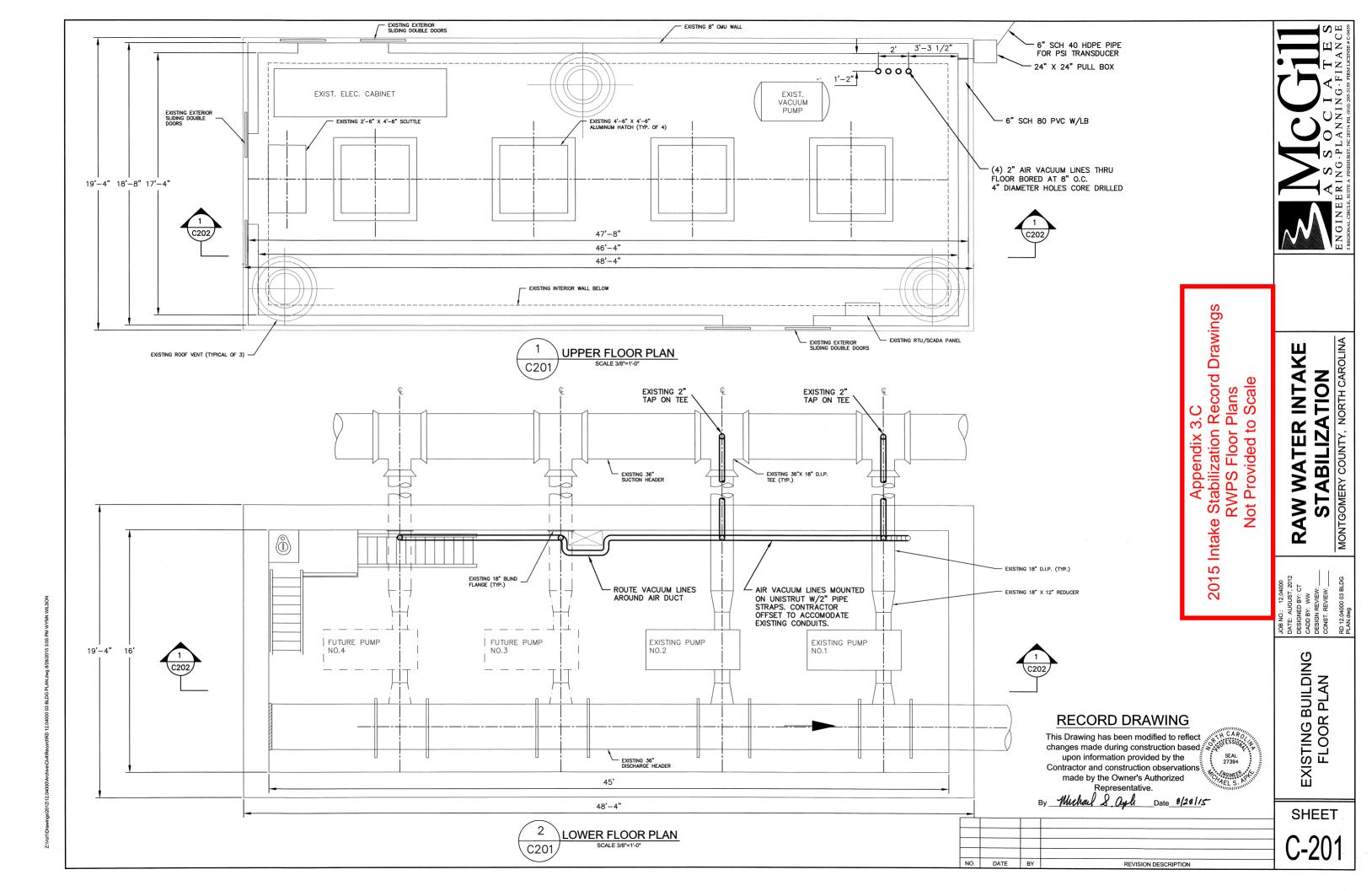

See Executive Summary Report for specific details and photographic evidence concerning conditions summarized above.

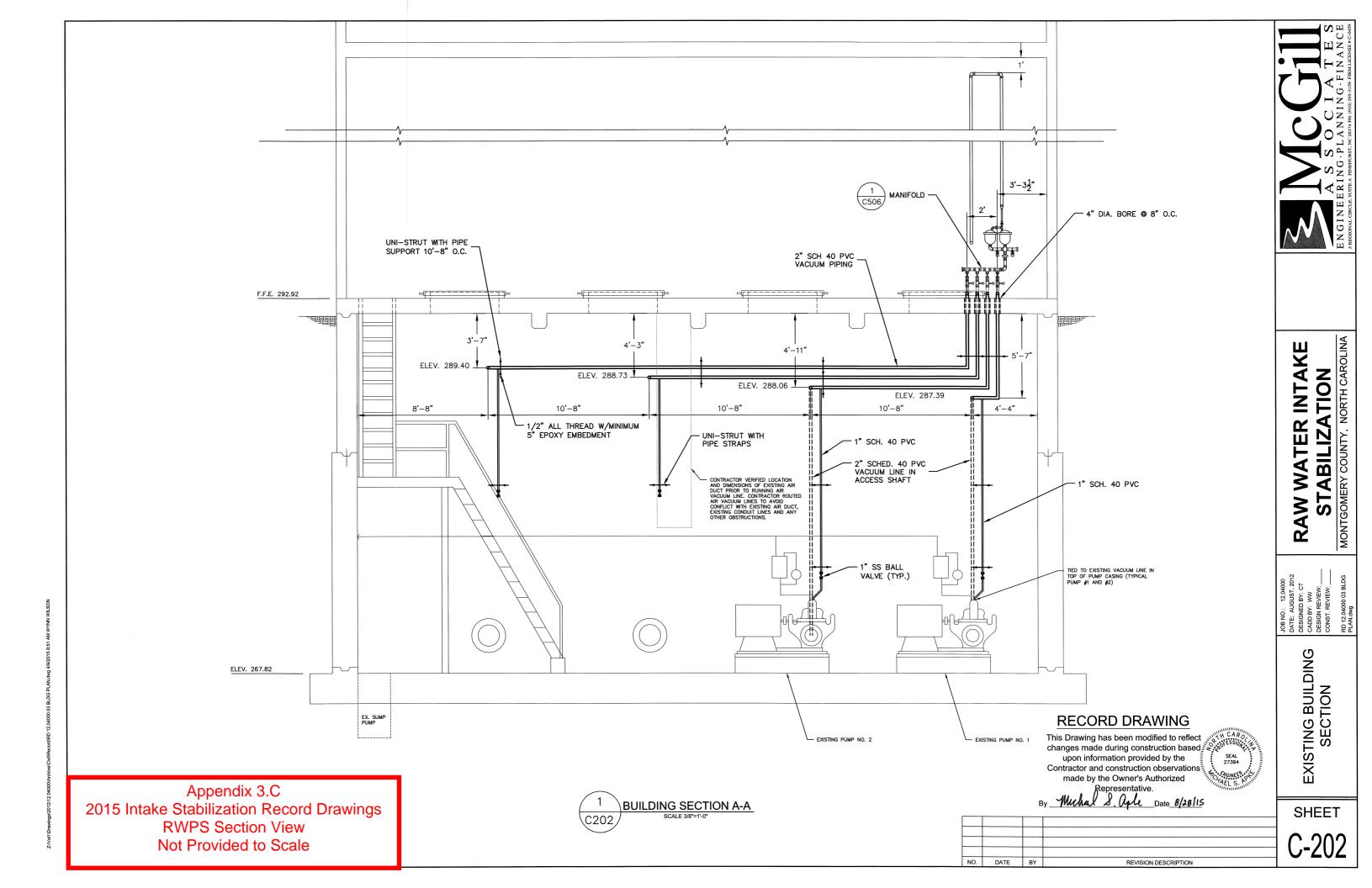





3.c RWPS Record Drawings







APPENDIX 4

4.a WTP Service Area Historical Population Data

MONTGOMERY COUNTY WTP SERVICE AREA HISTORICAL POPULATION DATA

	2000	2010	2017
Montgomery County	8,752	12,754	14,473
Town of Biscoe	1,700	1,700	1,749
Town of Candor	825	840	843
Town of Mt. Gilead	1,389	1,181	1,200
Town of Star	807	876	875
Town of Troy	3,632	4,500	4,300
Town of Robbins	1,195	1,097	1,107
WTP Service Area	18,300	22,948	24,547

4.b WTP Service Area 2017 Demands by User Type

2017 DEMANDS BY USER TYPE

		Water De	mand By User Ty	pe (MGD)		
	Residential	Commercial	Industrial	Institutional	Unaccounted For	Total Demand
Montgomery County:	0.466	0.282	0.000	0.000	0.463	1.211
Town of Biscoe:	0.160	0.060	0.090	0.010	0.020	0.340
Town of Candor:	0.039	0.013	0.057	0.003	0.011	0.123
Town of Mt. Gilead :	0.072	0.000	0.000	0.000	0.036	0.108
Town of Robbins:	0.093	0.014	0.005	0.008	0.027	0.147
Town of Star :	0.020	0.011	0.005	0.013	0.010	0.059
Town of Troy:	0.260	0.044	0.060	0.010	0.055	0.429
WTP Service Area :	1.110	0.424	0.217	0.044	0.622	2.417

Montgomery County Bulk Sales : 1.206 "Sum of Wholesale Purchasers"

4.c

WTP Service Area Summary of Population Projection

WTP SERVICE AREA SUMMARY OF POPULATION PROJECTIONS

				POPULATION	PROJECT	IONS		
Year	County	Biscoe	Candor	Mt. Gilead	Star	Troy	Robbins	Total System Population
2017	14,473	1,749	843	1,200	875	4,300	1,107	24,547
2018	14,714	1,867	845	1,213	878	4,300	1,118	24,936
2019	14,859	1,986	848	1,227	880	4,300	1,129	25,228
2020	15,003	2,104	850	1,240	883	4,300	1,140	25,520
2021	15,148	2,104	850	1,240	883	4,300	1,140	25,665
2022	15,293	2,150	850	1,252	888	4,320	1,152	25,906
2023	15,438	2,174	850	1,259	891	4,330	1,158	26,099
2024	15,582	2,197	850	1,265	893	4,340	1,164	26,291
2025	15,727	2,220	850	1,271	896	4,350	1,170	26,484
2026	15,872	2,243	850	1,277	899	4,360	1,176	26,677
2027	16,016	2,266	850	1,283	901	4,370	1,182	26,869
2028	16,161	2,290	850	1,290	904	4,380	1,188	27,062
2029	16,306	2,313	850	1,296	906	4,390	1,194	27,255
2030	16,451	2,336	850	1,302	909	4,400	1,200	27,448
2031	16,595	2,336	850	1,302	909	4,400	1,200	27,592
2032	16,740	2,392	850	1,315	915	4,400	1,210	27,822
2033	16,885	2,420	850	1,322	917	4,400	1,215	28,009
2034	17,029	2,448	850	1,328	920	4,400	1,220	28,196
2035	17,174	2,477	850	1,335	923	4,400	1,225	28,383
2036	17,319	2,505	850	1,341	926	4,400	1,230	28,570
2037	17,464	2,533	850	1,348	929	4,400	1,235	28,757
2038	17,608	2,561	850	1,354	931	4,400	1,240	28,944
2039	17,753	2,589	850	1,361	934	4,400	1,245	29,132
2040	17,898	2,617	850	1,367	937	4,400	1,250	29,319

4.d WTP Service Area Future Demands by User Type

FUTURE DEMANDS BY USER TYPE

			FUIUKE	DEMAN	ים זם פחו	SEKIIP	ᄃ			
				Res	sidential Dema	ands				
	Population	County	Biscoe	Candor	Mt. Gilead	Robbins	Star	Troy	Total	Bulk Sales
Current Year (2018) :	24,936	0.480	0.171	0.039	0.073	0.094	0.020	0.260	1.137	0.657
Year 5 :	26,099	0.504	0.199	0.039	0.076	0.097	0.020	0.262	1.197	0.693
Year 10 :	27,062	0.528	0.209	0.039	0.077	0.100	0.021	0.265	1.239	0.711
Year 15 :	28,009	0.551	0.221	0.039	0.079	0.102	0.021	0.266	1.280	0.729
Year 20 :	28,944	0.575	0.234	0.039	0.081	0.104	0.021	0.266	1.321	0.746
				Con	nmercial Dema	ands				
	Population	County	Biscoe	Candor	Mt. Gilead	Robbins	Star	Troy	Total	Bulk Sale
Current Year (2018) :	24,936	0.291	0.064	0.013	0.000	0.014	0.011	0.044	0.437	0.146
Year 5 :	26,099	0.305	0.075	0.013	0.000	0.015	0.011	0.044	0.463	0.158
Year 10 :	27,062	0.319	0.079	0.013	0.000	0.015	0.011	0.045	0.482	0.163
Year 15 :	28,009	0.334	0.083	0.013	0.000	0.015	0.012	0.045	0.502	0.168
Year 20 :	28,944	0.348	0.088	0.013	0.000	0.016	0.012	0.045	0.521	0.173
				Inc	dustrial Demai	nde				
	Population	County	Biscoe	Candor	Mt. Gilead	Robbins	Star	Troy	Total	Bulk Sale
Current Year (2018) :	24,936	-	0.096	0.057	0.000	0.005	0.005	0.060	0.223	0.223
Year 5 :	26,099	-	0.112	0.057	0.000	0.005	0.005	0.060	0.240	0.240
Year 10 :	27,062	-	0.118	0.057	0.000	0.005	0.005	0.061	0.247	0.247
Year 15 :	28,009	-	0.125	0.057	0.000	0.005	0.005	0.061	0.254	0.254
Year 20 :	28,944	-	0.132	0.057	0.000	0.006	0.005	0.061	0.262	0.262
Institutional Demands										
	Population	County	Biscoe	Candor	Mt. Gilead	Robbins	Star	Troy	Total	Bulk Sale
Current Year (2018) :	24,936	-	0.011	0.003	0.000	0.008	0.013	0.010	0.045	0.045
Year 5 :	26,099	-	0.012	0.003	0.000	0.008	0.013	0.010	0.047	0.047
Year 10 :	27,062	-	0.013	0.003	0.000	0.009	0.013	0.010	0.048	0.048
Year 15 :	28,009	-	0.014	0.003	0.000	0.009	0.014	0.010	0.050	0.050
Year 20 :	28,944	-	0.015	0.003	0.000	0.009	0.014	0.010	0.051	0.051
				- 11	naccounted F	·~•				
	Population	County	Biscoe	Candor	Mt. Gilead	Robbins	Star	Troy	Total	Bulk Sale
Current Year (2018) :	24,936	0.422	0.020	0.011	0.037	0.027	0.005	0.061	0.582	0.160
Year 5 :	26,099	0.347	0.025	0.011	0.037	0.026	0.006	0.072	0.523	0.176
Year 10 :	27,062	0.360	0.035	0.011	0.037	0.026	0.006	0.072	0.547	0.187
Year 15 :	28,009	0.373	0.041	0.011	0.037	0.026	0.006	0.072	0.566	0.193
V 20 -	00.044	0.207	0.045	0.044	0.027	0.000	0.000	0.070	0.504	0.407

Year 20 Bulk Sales: 0.513 0.124 0.118 0.161 0.058 0.455 1.429		Biscoe	Candor	Mt. Gilead	Robbins	Star	Troy	Total
1041 20 Bailt 04100 1	Year 20 Bulk Sales :	0.513	0.124	0.118	0.161	0.058	0.455	1.429

0.037

0.026

0.006

0.072

0.584

0.197

0.011

SOURCE(S): Local Water Supply Planning - North Carolina Division of Water Resources

0.387

0.045

Year 20 :

28,944

4.e Summary of Flow Projections

WTP SERVICE AREA SUMMARY OF FLOW PROJECTIONS

	AVERAGE DAILY FLOW PROJECTIONS (PRODUCTION)													
Year	County	Biscoe	Candor	Mt. Gilead	Star	Troy	Robbins	Total ADF Demand	OF SUPPLY (6.0 MGD)					
2017	1.208	0.340	0.123	0.108	0.054	0.429	0.147	2.409	40%					
2018	1.193	0.361	0.123	0.110	0.054	0.435	0.148	2.424	40%					
2019	1.159	0.383	0.124	0.111	0.055	0.440	0.149	2.419	40%					
2020	1.125	0.404	0.124	0.111	0.055	0.446	0.149	2.415	40%					
2021	1.133	0.406	0.124	0.111	0.055	0.446	0.149	2.425	40%					
2022	1.146	0.416	0.124	0.112	0.055	0.448	0.151	2.452	41%					
2023	1.156	0.423	0.124	0.113	0.056	0.449	0.151	2.470	41%					
2024	1.166	0.429	0.124	0.113	0.056	0.449	0.152	2.489	41%					
2025	1.176	0.435	0.124	0.113	0.056	0.450	0.153	2.508	42%					
2026	1.186	0.441	0.124	0.114	0.056	0.451	0.153	2.526	42%					
2027	1.197	0.448	0.124	0.114	0.056	0.452	0.154	2.545	42%					
2028	1.207	0.454	0.124	0.114	0.056	0.453	0.155	2.563	43%					
2029	1.217	0.460	0.124	0.115	0.057	0.454	0.155	2.582	43%					
2030	1.227	0.466	0.124	0.115	0.057	0.455	0.156	2.600	43%					
2031	1.235	0.467	0.124	0.115	0.057	0.455	0.156	2.608	43%					
2032	1.248	0.478	0.124	0.116	0.057	0.455	0.157	2.635	44%					
2033	1.258	0.484	0.124	0.116	0.057	0.455	0.158	2.652	44%					
2034	1.269	0.490	0.124	0.117	0.057	0.455	0.158	2.670	44%					
2035	1.279	0.496	0.124	0.117	0.058	0.455	0.159	2.687	45%					
2036	1.289	0.501	0.124	0.117	0.058	0.455	0.160	2.704	45%					
2037	1.300	0.507	0.124	0.118	0.058	0.455	0.160	2.722	45%					
2038	1.310	0.513	0.124	0.118	0.058	0.455	0.161	2.739	46%					
2039	1.321	0.519	0.124	0.119	0.058	0.455	0.161	2.756	46%					
2040	1.331	0.525	0.124	0.119	0.058	0.455	0.162	2.774	46%					

Montgomery County Population and Usage Information Includes Flow For County Customers, Carolina Forest, and Wood Run

SURFACE WATER SOURCE AND USAGE

Plant Capacity: 6.0 MGD

(Yadkin River (18-1)) Stream: Pee Dee River

Reservoir: Lake Tillery

2017 2020 Avg. Day Withdrawal: 2.573 MGD 2030 2040 Max. Day Withdrawal : MGD 3.755 Unnaccounted Water 0.463 0.339 0.365 0.393

Based on 2017 LWSP - Unaccounted for water is assumed to be lost through sludge production/waste

	HISTORICAL POPULA	TION SERVED (LWSP)		RESIDENTIAL CONNECTION ESTIMATES			COMMERCIAL CONNECTION ESTIMATES	
	Population	Residential Conn.	Commercial Conn.	Population Per Conn.	ADF Residential	ADF per Person	ADF Commerical	ADF per Person
2012	13,743	5,286	139	2.60	0.462	33.62	0.253	18.41
2013	14,044	5,401	139	2.60	0.446	31.76	0.277	19.72
2014	14,136	5,437	137	2.60	0.466	32.97	0.279	19.74
2015	14,432	5,551	140	2.60	0.481	33.33	0.294	20.37
2016	14,417	5,574	147	2.59	0.462	32.05	0.300	20.81
2017	14,473	5,610	149	2.58	0.466	32.20	0.282	19.48
F	R ² : 0.943	•	Average :	2.59	0.464	32.65	0.281	19.76

Vaar	Lineau Futura eletica	Calculated Estimate	Calculated Residential	Calculated		Unaccounted Water	Total Service Area
Year	Linear Extrapolation	Residential Conn.	ADF	Commercial ADF	Total ADF	Lost	Demand (ADF)
2018	14,714	5,671	0.480	0.291	0.771	0.422	1.193
2019	14,859	5,727	0.485	0.294	0.779	0.380	1.159
2020	15,003	5,783	0.490	0.296	0.786	0.339	1.125
2021	15,148	5,839	0.495	0.299	0.794	0.339	1.133
2022	15,293	5,895	0.499	0.302	0.801	0.344	1.146
2023	15,438	5,950	0.504	0.305	0.809	0.347	1.156
2024	15,582	6,006	0.509	0.308	0.817	0.349	1.166
2025	15,727	6,062	0.514	0.311	0.824	0.352	1.176
2026	15,872	6,118	0.518	0.314	0.832	0.355	1.186
2027	16,016	6,173	0.523	0.316	0.839	0.357	1.197
2028	16,161	6,229	0.528	0.319	0.847	0.360	1.207
2029	16,306	6,285	0.532	0.322	0.855	0.362	1.217
2030	16,451	6,341	0.537	0.325	0.862	0.365	1.227
2031	16,595	6,397	0.542	0.328	0.870	0.365	1.235
2032	16,740	6,452	0.547	0.331	0.877	0.371	1.248
2033	16,885	6,508	0.551	0.334	0.885	0.373	1.258
2034	17,029	6,564	0.556	0.336	0.892	0.376	1.269
2035	17,174	6,620	0.561	0.339	0.900	0.379	1.279
2036	17,319	6,676	0.565	0.342	0.908	0.382	1.289
2037	17,464	6,731	0.570	0.345	0.915	0.385	1.300
2038	17,608	6,787	0.575	0.348	0.923	0.387	1.310
2039	17,753	6,843	0.580	0.351	0.930	0.390	1.321
2040	17,898	6,899	0.584	0.354	0.938	0.393	1.331
2041	18,042	6,954	0.589	0.356	0.946	0.393	1.339

TOWN OF BISCOE - POPULATION AND USAGE INFORMATION

Total Contracted Water Supply: 0.900 MGD

2017 GPCD by User

Type Residential: 91 Commercial: 34

Industrial: 51 Institutional: 6

LWSP PLANNING PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	1,749	2,104	2,336	2,617	2,930	3,230
Residential	0.160	0.110	0.120	0.160	0.179	0.197
Commercial	0.060	0.040	0.069	0.085	0.104	0.120
Industrial	0.090	0.056	0.263	0.294	0.328	0.361
Institutional	0.010	0.020	0.006	0.006	0.006	0.006
Unaccounted For	0.020	0.019	0.039	0.046	0.052	0.058
Service Area Demand	0.340	0.245	0.497	0.591	0.669	0.742

ENGINEERING REPORT TREND PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	1,749	2,104	2,336	2,617	2,930	3,230
Residential	0.160	0.192	0.214	0.239	0.268	0.295
Commercial	0.060	0.072	0.080	0.090	0.101	0.111
Industrial	0.090	0.108	0.120	0.135	0.151	0.166
Institutional	0.010	0.012	0.013	0.015	0.017	0.018
Unaccounted For	0.020	0.024	0.027	0.030	0.034	0.037
Service Area Demand	0.340	0.409	0.454	0.509	0.570	0.628

FLOW PROJECTION FOR PLANNING PERIOD

Year	Avg. Daily Flow	Population	Residential	Commercial	Industrial	Institutional	*Unaccounted For
2017	0.34	1,749	0.160	0.060	0.090	0.010	0.020
2018	0.36	1,867	0.171	0.064	0.096	0.011	0.020
2019	0.38	1,986	0.182	0.068	0.102	0.011	0.019
2020	0.40	2,104	0.192	0.072	0.108	0.012	0.019
2021	0.41	2,104	0.192	0.072	0.108	0.012	0.021
2022	0.42	2,150	0.197	0.074	0.111	0.012	0.023
2023	0.42	2,174	0.199	0.075	0.112	0.012	0.025
2024	0.43	2,197	0.201	0.075	0.113	0.013	0.027
2025	0.44	2,220	0.203	0.076	0.114	0.013	0.029
2026	0.44	2,243	0.205	0.077	0.115	0.013	0.031
2027	0.45	2,266	0.207	0.078	0.117	0.013	0.033
2028	0.45	2,290	0.209	0.079	0.118	0.013	0.035
2029	0.46	2,313	0.212	0.079	0.119	0.013	0.037
2030	0.47	2,336	0.214	0.080	0.120	0.013	0.039
2031	0.47	2,336	0.214	0.080	0.120	0.013	0.040
2032	0.48	2,392	0.219	0.082	0.123	0.014	0.040
2033	0.48	2,420	0.221	0.083	0.125	0.014	0.041
2034	0.49	2,448	0.224	0.084	0.126	0.014	0.042
2035	0.50	2,477	0.227	0.085	0.127	0.014	0.043
2036	0.50	2,505	0.229	0.086	0.129	0.014	0.043
2037	0.51	2,533	0.232	0.087	0.130	0.014	0.044
2038	0.51	2,561	0.234	0.088	0.132	0.015	0.045
2039	0.52	2,589	0.237	0.089	0.133	0.015	0.045
2040	0.52	2,617	0.239	0.090	0.135	0.015	0.046

^{*}Unaccounted-for data provided for years 2018, 2020, 2030 and 2040; linear interpolation used for intervening years

TOWN OF CANDOR - POPULATION AND USAGE INFORMATION

Total Contracted Water Supply: 0.170 MGD

2017 GPCD by User

LWSP PLANNING PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	843	850	850	850	850	850
Residential	0.039	0.040	0.040	0.040	0.040	0.040
Commercial	0.013	0.015	0.015	0.015	0.015	0.015
Industrial	0.057	0.055	0.055	0.055	0.055	0.055
Institutional	0.003	0.002	0.002	0.002	0.002	0.002
Unaccounted For	0.011	0.011	0.011	0.011	0.011	0.011
Service Area Demand	0.123	0.123	0.123	0.123	0.123	0.123

ENGINEERING REPORT TREND PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	843	850	850	850	850	850
Residential	0.039	0.039	0.039	0.039	0.039	0.039
Commercial	0.013	0.013	0.013	0.013	0.013	0.013
Industrial	0.057	0.057	0.057	0.057	0.057	0.057
Institutional	0.003	0.003	0.003	0.003	0.003	0.003
Unaccounted For	0.011	0.072	0.072	0.072	0.072	0.072
Service Area Demand	0.123	0.185	0.185	0.185	0.185	0.185

FLOW PROJECTION FOR PLANNING PERIOD

Year	Avg. Daily Flow	Population	Residential	Commercial	Industrial	Institutional	*Unaccounted For
2017	0.12	843	0.039	0.013	0.057	0.003	0.011
2018	0.12	845	0.039	0.013	0.057	0.003	0.011
2019	0.12	848	0.039	0.013	0.057	0.003	0.011
2020	0.12	850	0.039	0.013	0.057	0.003	0.011
2021	0.12	850	0.039	0.013	0.057	0.003	0.011
2022	0.12	850	0.039	0.013	0.057	0.003	0.011
2023	0.12	850	0.039	0.013	0.057	0.003	0.011
2024	0.12	850	0.039	0.013	0.057	0.003	0.011
2025	0.12	850	0.039	0.013	0.057	0.003	0.011
2026	0.12	850	0.039	0.013	0.057	0.003	0.011
2027	0.12	850	0.039	0.013	0.057	0.003	0.011
2028	0.12	850	0.039	0.013	0.057	0.003	0.011
2029	0.12	850	0.039	0.013	0.057	0.003	0.011
2030	0.12	850	0.039	0.013	0.057	0.003	0.011
2031	0.12	850	0.039	0.013	0.057	0.003	0.011
2032	0.12	850	0.039	0.013	0.057	0.003	0.011
2033	0.12	850	0.039	0.013	0.057	0.003	0.011
2034	0.12	850	0.039	0.013	0.057	0.003	0.011
2035	0.12	850	0.039	0.013	0.057	0.003	0.011
2036	0.12	850	0.039	0.013	0.057	0.003	0.011
2037	0.12	850	0.039	0.013	0.057	0.003	0.011
2038	0.12	850	0.039	0.013	0.057	0.003	0.011
2039	0.12	850	0.039	0.013	0.057	0.003	0.011
2040	0.12	850	0.039	0.013	0.057	0.003	0.011

^{*}Unaccounted-for data provided for years 2017, 2020, 2030 and 2040; linear interpolation used for intervening years

TOWN OF MOUNT GILEAD - POPULATION AND USAGE INFORMATION

Total Contracted Water Supply: 0.200 MGD

Indicates Questionable Data

2017 GPCD by User

| Type | Residential : 60 | 60 | Commercial : 0 | Industrial : 0 | Institutional : 0 |

LWSP PLANNING PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	1,200	1,240	1,302	1,367	1,435	1,507
Residential	0.072	0.074	0.074	0.074	0.074	0.074
Commercial	0.000	0.000	0.000	0.000	0.000	0.000
Industrial	0.000	0.000	0.000	0.000	0.000	0.000
Institutional	0.000	0.000	0.000	0.000	0.000	0.000
Unaccounted For	0.036	0.037	0.037	0.037	0.037	0.037
Service Area Demand	0.108	0.111	0.111	0.111	0.111	0.111

ENGINEERING REPORT TREND PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	1,200	1,240	1,302	1,367	1,435	1,507
Residential	0.072	0.074	0.078	0.082	0.086	0.090
Commercial	0.000	0.000	0.000	0.000	0.000	0.000
Industrial	0.000	0.000	0.000	0.000	0.000	0.000
Institutional	0.000	0.000	0.000	0.000	0.000	0.000
Unaccounted For	0.036	0.072	0.072	0.072	0.072	0.072
Service Area Demand	0.108	0.146	0.150	0.154	0.158	0.162

FLOW PROJECTION FOR PLANNING PERIOD

Year	Avg. Daily Flow	Population	Residential	Commercial	Industrial	Institutional	*Unaccounted For
2017	0.11	1,200	0.072	0.000	0.000	0.000	0.037
2018	0.11	1,213	0.073	0.000	0.000	0.000	0.037
2019	0.11	1,227	0.074	0.000	0.000	0.000	0.037
2020	0.11	1,240	0.074	0.000	0.000	0.000	0.037
2021	0.11	1,240	0.074	0.000	0.000	0.000	0.037
2022	0.11	1,252	0.075	0.000	0.000	0.000	0.037
2023	0.11	1,259	0.076	0.000	0.000	0.000	0.037
2024	0.11	1,265	0.076	0.000	0.000	0.000	0.037
2025	0.11	1,271	0.076	0.000	0.000	0.000	0.037
2026	0.11	1,277	0.077	0.000	0.000	0.000	0.037
2027	0.11	1,283	0.077	0.000	0.000	0.000	0.037
2028	0.11	1,290	0.077	0.000	0.000	0.000	0.037
2029	0.11	1,296	0.078	0.000	0.000	0.000	0.037
2030	0.12	1,302	0.078	0.000	0.000	0.000	0.037
2031	0.12	1,302	0.078	0.000	0.000	0.000	0.037
2032	0.12	1,315	0.079	0.000	0.000	0.000	0.037
2033	0.12	1,322	0.079	0.000	0.000	0.000	0.037
2034	0.12	1,328	0.080	0.000	0.000	0.000	0.037
2035	0.12	1,335	0.080	0.000	0.000	0.000	0.037
2036	0.12	1,341	0.080	0.000	0.000	0.000	0.037
2037	0.12	1,348	0.081	0.000	0.000	0.000	0.037
2038	0.12	1,354	0.081	0.000	0.000	0.000	0.037
2039	0.12	1,361	0.082	0.000	0.000	0.000	0.037
2040	0.12	1,367	0.082	0.000	0.000	0.000	0.037

^{*}Unaccounted-for data provided for years 2017, 2020, 2030 and 2040; linear interpolation used for intervening years

TOWN OF ROBBINS - POPULATION AND USAGE INFORMATION

Total Contracted Water Supply: 0.250 MGD

2017 GPCD by User

| Type | Residential : 84 | Commercial : 13 | Industrial : 5 | Institutional : 7 |

LWSP PLANNING PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	1,107	1,140	1,200	1,250	1,300	1,350
Residential	0.093	0.090	0.093	0.095	0.097	0.099
Commercial	0.014	0.015	0.016	0.017	0.018	0.019
Industrial	0.005	0.005	0.005	0.005	0.005	0.005
Institutional	0.008	0.008	0.009	0.009	0.010	0.010
Unaccounted For	0.027	0.026	0.026	0.026	0.026	0.027
Service Area Demand	0.147	0.144	0.149	0.152	0.156	0.160

ENGINEERING REPORT TREND PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	1,107	1,140	1,200	1,250	1,300	1,350
Residential	0.093	0.096	0.101	0.105	0.109	0.113
Commercial	0.014	0.014	0.015	0.016	0.016	0.017
Industrial	0.005	0.005	0.005	0.006	0.006	0.006
Institutional	0.008	0.008	0.009	0.009	0.009	0.010
Unaccounted For	0.027	0.072	0.072	0.072	0.072	0.072
Service Area Demand	0.147	0.196	0.202	0.208	0.213	0.218

FLOW PROJECTION FOR PLANNING PERIOD

Year	Avg. Daily Flow	Population	Residential	Commercial	Industrial	Institutional	*Unaccounted For
2017	0.15	1,107	0.093	0.014	0.005	0.008	0.027
2018	0.15	1,118	0.094	0.014	0.005	0.008	0.027
2019	0.15	1,129	0.095	0.014	0.005	0.008	0.026
2020	0.15	1,140	0.096	0.014	0.005	0.008	0.026
2021	0.15	1,140	0.096	0.014	0.005	0.008	0.026
2022	0.15	1,152	0.097	0.015	0.005	0.008	0.026
2023	0.15	1,158	0.097	0.015	0.005	0.008	0.026
2024	0.15	1,164	0.098	0.015	0.005	0.008	0.026
2025	0.15	1,170	0.098	0.015	0.005	0.008	0.026
2026	0.15	1,176	0.099	0.015	0.005	0.008	0.026
2027	0.15	1,182	0.099	0.015	0.005	0.009	0.026
2028	0.15	1,188	0.100	0.015	0.005	0.009	0.026
2029	0.16	1,194	0.100	0.015	0.005	0.009	0.026
2030	0.16	1,200	0.101	0.015	0.005	0.009	0.026
2031	0.16	1,200	0.101	0.015	0.005	0.009	0.026
2032	0.16	1,210	0.102	0.015	0.005	0.009	0.026
2033	0.16	1,215	0.102	0.015	0.005	0.009	0.026
2034	0.16	1,220	0.102	0.015	0.006	0.009	0.026
2035	0.16	1,225	0.103	0.015	0.006	0.009	0.026
2036	0.16	1,230	0.103	0.016	0.006	0.009	0.026
2037	0.16	1,235	0.104	0.016	0.006	0.009	0.026
2038	0.16	1,240	0.104	0.016	0.006	0.009	0.026
2039	0.16	1,245	0.105	0.016	0.006	0.009	0.026
2040	0.16	1,250	0.105	0.016	0.006	0.009	0.026

^{*}Unaccounted-for data provided for years 2017, 2020, 2030 and 2040; linear interpolation used for intervening years

TOWN OF TROY - POPULATION AND USAGE INFORMATION

Total Contracted Water Supply: 1.000 MGD

2017 GPCD by User

| Type | Residential : 60 | 60 | 10 | 10 | 14 | 14 | Institutional : 2

LWSP PLANNING PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	4,300	4,300	4,400	4,400	4,400	4,400
Residential	0.260	0.300	0.320	0.320	0.320	0.320
Commercial	0.044	0.004	0.005	0.005	0.005	0.005
Industrial	0.060	0.030	0.030	0.030	0.030	0.030
Institutional	0.010	0.007	0.008	0.008	0.008	0.008
Unaccounted For	0.055	0.049	0.052	0.052	0.052	0.052
Service Area Demand	0.429	0.390	0.415	0.415	0.415	0.415

ENGINEERING REPORT TREND PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	4,300	4,300	4,400	4,400	4,400	4,400
Residential	0.260	0.260	0.266	0.266	0.266	0.266
Commercial	0.044	0.044	0.045	0.045	0.045	0.045
Industrial	0.060	0.060	0.061	0.061	0.061	0.061
Institutional	0.010	0.010	0.010	0.010	0.010	0.010
Unaccounted For	0.055	0.072	0.072	0.072	0.072	0.072
Service Area Demand	0.429	0.446	0.455	0.455	0.455	0.455

FLOW PROJECTION FOR PLANNING PERIOD

Year	Avg. Daily Flow	Population	Residential	Commercial	Industrial	Institutional	*Unaccounted For
2017	0.43	4,300	0.260	0.044	0.060	0.010	0.055
2018	0.43	4,300	0.260	0.044	0.060	0.010	0.061
2019	0.44	4,300	0.260	0.044	0.060	0.010	0.066
2020	0.45	4,300	0.260	0.044	0.060	0.010	0.072
2021	0.45	4,300	0.260	0.044	0.060	0.010	0.072
2022	0.45	4,320	0.261	0.044	0.060	0.010	0.072
2023	0.45	4,330	0.262	0.044	0.060	0.010	0.072
2024	0.45	4,340	0.262	0.044	0.061	0.010	0.072
2025	0.45	4,350	0.263	0.045	0.061	0.010	0.072
2026	0.45	4,360	0.264	0.045	0.061	0.010	0.072
2027	0.45	4,370	0.264	0.045	0.061	0.010	0.072
2028	0.45	4,380	0.265	0.045	0.061	0.010	0.072
2029	0.45	4,390	0.265	0.045	0.061	0.010	0.072
2030	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2031	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2032	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2033	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2034	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2035	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2036	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2037	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2038	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2039	0.45	4,400	0.266	0.045	0.061	0.010	0.072
2040	0.45	4,400	0.266	0.045	0.061	0.010	0.072

^{*}Unaccounted-for data provided for years 2017, 2020, 2030 and 2040; linear interpolation used for intervening years

TOWN OF STAR - POPULATION AND USAGE INFORMATION

Total Contracted Water Supply: 0.113 MGD

2017 GPCD by User

| Type | Residential : 23 | Commercial : 13 | Industrial : 6 | Institutional : 15 |

LWSP PLANNING PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	875	883	909	937	965	994
Residential	0.020	0.028	0.029	0.030	0.031	0.032
Commercial	0.011	0.011	0.012	0.013	0.014	0.015
Industrial	0.005	0.005	0.005	0.005	0.005	0.005
Institutional	0.013	0.012	0.012	0.012	0.012	0.012
Unaccounted For	0.005	0.006	0.006	0.006	0.006	0.006
Service Area Demand	0.054	0.062	0.064	0.066	0.068	0.070

ENGINEERING REPORT TREND PROJECTIONS

	2017	2020	2030	2040	2050	2060
Year-Round Population	875	883	909	937	965	994
Residential	0.020	0.020	0.021	0.021	0.022	0.023
Commercial	0.011	0.011	0.011	0.012	0.012	0.012
Industrial	0.005	0.005	0.005	0.005	0.006	0.006
Institutional	0.013	0.013	0.014	0.014	0.014	0.015
Unaccounted For	0.005	0.072	0.072	0.072	0.072	0.072
Service Area Demand	0.054	0.121	0.123	0.124	0.126	0.128

FLOW PROJECTION FOR PLANNING PERIOD

Year	Avg. Daily Flow	Population	Residential	Commercial	Industrial	Institutional	*Unaccounted For
2017	0.05	875	0.020	0.011	0.005	0.013	0.005
2018	0.05	878	0.020	0.011	0.005	0.013	0.005
2019	0.05	880	0.020	0.011	0.005	0.013	0.005
2020	0.06	883	0.020	0.011	0.005	0.013	0.006
2021	0.06	883	0.020	0.011	0.005	0.013	0.006
2022	0.06	888	0.020	0.011	0.005	0.013	0.006
2023	0.06	891	0.020	0.011	0.005	0.013	0.006
2024	0.06	893	0.020	0.011	0.005	0.013	0.006
2025	0.06	896	0.020	0.011	0.005	0.013	0.006
2026	0.06	899	0.021	0.011	0.005	0.013	0.006
2027	0.06	901	0.021	0.011	0.005	0.013	0.006
2028	0.06	904	0.021	0.011	0.005	0.013	0.006
2029	0.06	906	0.021	0.011	0.005	0.013	0.006
2030	0.06	909	0.021	0.011	0.005	0.014	0.006
2031	0.06	909	0.021	0.011	0.005	0.014	0.006
2032	0.06	915	0.021	0.011	0.005	0.014	0.006
2033	0.06	917	0.021	0.012	0.005	0.014	0.006
2034	0.06	920	0.021	0.012	0.005	0.014	0.006
2035	0.06	923	0.021	0.012	0.005	0.014	0.006
2036	0.06	926	0.021	0.012	0.005	0.014	0.006
2037	0.06	929	0.021	0.012	0.005	0.014	0.006
2038	0.06	931	0.021	0.012	0.005	0.014	0.006
2039	0.06	934	0.021	0.012	0.005	0.014	0.006
2040	0.06	937	0.021	0.012	0.005	0.014	0.006

^{*}Unaccounted-for data provided for years 2017, 2020, 2030 and 2040; linear interpolation used for intervening years

4.f Montgomery County LSWP

Montgomery Co

2012 •

Complete

83 64 %

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

1. System Information

Contact Information

Water System Name: Montgomery Co PWSID: 03-62-010

Mailing Address: 724 Hydro Road Ownership: County

Mount Gilead, NC 27306 Ownership: Cour

Contact Person: Matthew H. Morris Title: Director of Public Utilities

Phone: 910-439-6198 Fax: 910-439-9488

Distribution System

Polyvinyl Chloride

Line Type Size Range (Inches) Estimated % of lines
Asbestos Cement 6, 16 6.72 %
Ductile Iron 6-24 9.64 %

2-12

What are the estimated total miles of distribution system lines? 470 Miles

How many feet of distribution lines were replaced during 2012? 0 Feet

How many feet of new water mains were added during 2012? 101,948 Feet

How many meters were replaced in 2012? 50

How old are the oldest meters in this system? 20 Year(s)

How many meters for outdoor water use, such as irrigation, are not billed for sewer services? 0

What is this system's finished water storage capacity? 3.9200 Million Gallons

Has water pressure been inadequate in any part of the system since last update? No

Programs

Does this system have a program to work or flush hydrants? Yes, As Needed

Does this system have a valve exercise program? Yes, As Needed

Does this system have a cross-connection program? Yes

Does this system have a program to replace meters? Yes

Does this system have a plumbing retrofit program? No

Does this system have an active water conservation public education program? $\,$ No

Does this system have a leak detection program? No

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? $\,$ 0.0000 MGD $\,$ For how many connections? $\,$ 0

Does this system have an interconnection with another system capable of providing water in an emergency? $\,$ No

Crossing Lake Tillery is a challenge to establishing a connection with our closest neighboring system. System capacity and IBT limits challenge the next closest system. We are working with the third closest system (Seagrove, NC & Asheboro, NC) to study the feasibility of a connection.

2. Water Use Information

Service Area

Sub-Basin(s)	% of Service Population	County(s)	% of Service Population
Yadkin River (18-1)	86 %	Montgomery	100 %
Deep River (02-2)	10 %		
Lumber River (09-1)	3 %		
Uwharrie River (18-3)	1 %		

What was the year-round population served in 2012? 13,743
Has this system acquired another system since last report? No

Water Use by Type

Type of Use	Metered Connections	Metered Average Use (MGD)	Non-Metered Connections	Non-Metered Estimated Use (MGD)
Residential	5,286	0.4620	0	0.0000
Commercial	139	0.2530	0	0.0000
Industrial	0	0.0000	0	0.0000
Institutional	0	0.0000	0	0.0000

How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 0.0340 MGD

Water Sales

Purchaser PW	DWCID	Average PWSID Daily Sold	Days	Contract			Required to comply with water	Pipe Size(s)	Use
Purchaser	PWSID	(MGD)	Used	MGD	Expiration	Recurring	use restrictions?	(Inches)	Type
Carolina Forest	03-62-106	0.0210	365	0.0500	2040	Yes	Yes	12	Regular
Town of Biscoe	03-62-035	0.2340	365	0.7850	2045	Yes	Yes	16,12	Regular
Town of Candor	03-62-030	0.1160	365	0.1500	2045	Yes	Yes	12, 8	Regular
Town of Mt Gilead	03-62-015	0.0910	365	0.1700	2045	Yes	Yes	24,20	Regular
Town of Robbins	03-63-015	0.1420	365	0.2500	2013	Yes	Yes	10	Regular
Town of Star	03-62-025	0.0760	365	0.1230	2045	Yes	Yes	8, 12	Regular
Town of Troy	03-62-020	0.4070	365	0.9030	2045	Yes	Yes	20,16	Regular
Wood Run	03-62-107	0.0580	365	0.0500	2040	Yes	Yes	12	Regular

Carolina Forest & Wood Run are under one contract with a combined maximum usage of 0.100MGD. Since Carolina Forest and Wood Run do not have plans submitted at the time of this review, the combined maximum usage is divided equally between the two systems for simplicity and to account for demand on the county's system.

The towns of Candor, Star, Biscoe, Troy and Mount Gilead all renewed contracts in 2005 for 40 years. They are not to exceed 60 MG per month.

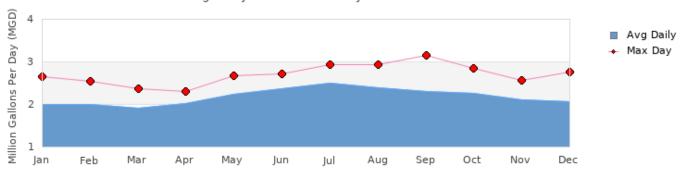
Montgomery County currently does not have enough water supply for each of the towns mentioned above to purchase 2 MGD a piece.

The contract value of 0.17 MGD is the amount of water Mount Gilead would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.785 MGD is the amount of water Biscoe would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.15 MGD is the amount of water Candor would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.123 MGD is the amount of water Star would need to purchase in order not to exceed 80% of supply by 2040.


The contract value of 0.903 MGD is the amount of water Troy would need to purchase in order not to exceed 80% of supply by 2040.

3. Water Supply Sources

Monthly Withdrawals & Purchases

	Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)
Jan	2.0000	2.6460	May	2.2310	2.6740	Sep	2.2960	3.1480
Feb	2.0000	2.5380	Jun	2.3690	2.7130	Oct	2.2590	2.8390
Mar	1.9010	2.3560	Jul	2.4990	2.9270	Nov	2.1120	2.5640
Apr	2.0170	2.3030	Aug	2.3960	2.9250	Dec	2.0600	2.7670

Montgomery Co's 2012 Monthly Withdrawals & Purchases

Surface Water Sources

Pee Dee River	Lake Tillery	2.1770	365	3.1480	6.0000	С	774.0000
		MGD	Days Used	Withdrawar (MOD)	MGD	* Qualifier	Storage (MG)
Stream	Reservoir	Average Daily Withdrawal		Maximum Day Withdrawal (MGD)	Available Raw Water Supply		Usable On-Stream Raw Water Supply

^{*} Qualifier: C=Contract Amount, SY20=20-year Safe Yield, SY50=50-year Safe Yield, F=20% of 7Q10 or other instream flow requirement, CUA=Capacity Use Area Permit

Surface Water Sources (continued)

Pee Dee River	Lake Tillery	4,600	Yes	Yadkin River (18-1)	Montgomery		Regular
Stream	Reservoir	Drainage Area (sq mi)	Metered?	Sub-Basin	County	Year Offline	Use Type

What is this system's off-stream raw water supply storage capacity? 6 Million gallons

Are surface water sources monitored? Yes, Daily

Are you required to maintain minimum flows downstream of its intake or dam? No

Does this system anticipate transferring surface water between river basins? Yes

IBT occurs with the following:

Sale of water to the Town of Robbins NC - Deep River Basin (02-2)

Sale of water to customers in the Lumber River Basin (09-1)

Sale of water to customers int the Uwharrie River Basin (18-3)

The available raw water supply value of 6 MGD represents the amount of water allocated by Duke Energy Progress that the county can withdraw.

The raw water storage value of 774 MG was taken from the 2002 LWSP.

Water Purchases From Other Systems

O-H DV	DWOLD	Average	chased Days		Contract		Required to	Pipe Size(s)	Use
Seller	PWSID	Daily Purchased (MGD)		MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Type
Town of Troy	03-62-020	0.0000	365		2045	Yes	Yes	8	Regular

This is a buy back senario of 0.036 MGD. I did not put this number in this program because it will show this as available water supply in the planning section of this report.

Water Treatment Plants

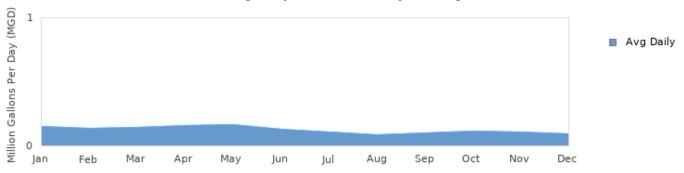
Plant Name	Permitted Capacity (MGD)	Is Raw Water Metered?	Is Finished Water Ouput Metered?	Source
Montgomery County WTP	6.0000	Yes	Yes	Lake Tillery

Did average daily water production exceed 80% of approved plant capacity for five consecutive days during 2012? No

If yes, was any water conservation implemented?

Did average daily water production exceed 90% of approved plant capacity for five consecutive days during 2012? $\,$ No

If yes, was any water conservation implemented?


Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? $\,$ No

4. Wastewater Information

Monthly Discharges

	Average Daily Discharge (MGD)		Average Daily Discharge (MGD)	Average Daily Discharge (MGD)	
Jan	0.1500	May	0.1620	Sep	0.1010
Feb	0.1370	Jun	0.1260	Oct	0.1140
Mar	0.1410	Jul	0.1080	Nov	0.1040
Apr	0.1550	Aug	0.0860	Dec	0.0900

Montgomery Co's 2012 Monthly Discharges

How many sewer connections does this system have? 1,700

How many water service connections with septic systems does this system have? 3,725

Are there plans to build or expand wastewater treatment facilities in the next 10 years? Yes

All domestic wastewater collected is treated by local town owned facilities. The County only treats byproduct wastewater from its conventional water treatment facility. Currently, the wastewater treatment facilities at the WTP are undersized and are being upgraded to match the 6 MGD capacity of the WTP.

The average daily discharges above represent the decanted water from the water treatment process and wastewater discharged to local town owned facilities.

Wastewater Permits

Permit Number	Permitted Capacity (MGD)	Design Capacity (MGD)	Average Annual Daily Discharge (MGD)	Maximum Day Discharge (MGD)	Receiving Stream	Receiving Basin	
NC0080322	0.4700	0.3800	0.0660	0.2940	Unamed Trib. to Clarks Creek	Yadkin River (18- 1)	
Wastewater Inter	connections						
Mater Cur		DWCID	Tuna	Average [Contract		
Water Sys	stem	PWSID	Туре	MGD	Days Used	Maximum (MGD)	
Town of Candor		03-62-030	Discharging	0.0210	365	0.0000	
Town of Mt.Gilead		03-62-015	Discharging	0.0330	365	0.0000	
Town of Troy		03-62-020	Discharging	0.0030	365	0.0000	

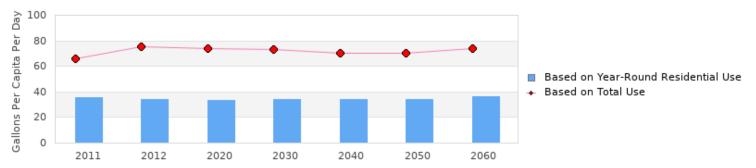
5. Planning

Projections

	2012	2020	2030	2040	2050	2060
Year-Round Population	13,743	14,642	15,699	16,885	18,071	18,071
Seasonal Population	0	0	0	0	0	0
Residential	0.4620	0.4900	0.5270	0.5670	0.6100	0.6560
Commercial	0.2530	0.2590	0.2670	0.2610	0.2750	0.2830
Industrial	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Institutional	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

 System Process
 0.0340
 0.0350
 0.0360
 0.0370
 0.0380
 0.0390

 Unaccounted-for
 0.2802
 0.2930
 0.3100
 0.3230
 0.3450
 0.3660


Residential Growth = 7.5% per 10 years Commercial Growth = 3.0% per 10 years

- 10	Demand	V/S	Percent	of	Supply
	Demand	V/3	LCICCIII	O1	Ouppiy

11/29/2018

	2012	2020	2030	2040	2050	2060
Surface Water Supply	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Ground Water Supply	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Purchases	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Future Supplies		0.0000	0.0000	0.0000	0.0000	0.0000
Total Available Supply (MGD)	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Service Area Demand	1.0292	1.0770	1.1400	1.1880	1.2680	1.3440
Sales	1.1419	2.4890	2.4890	2.4890	2.4890	2.4890
Future Sales		0.0000	0.0000	0.0000	0.0000	0.0000
Total Demand (MGD)	2.1711	3.5660	3.6290	3.6770	3.7570	3.8330
Demand as Percent of Supply	36%	59%	60%	61%	63%	64%

Montgomery Co's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

Your long-term water demand is 34 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here. The county currently has a meter replacement program, and increasing block rate structure for water rates

Are there other demand management practices you will implement to reduce your future supply needs?

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs?

How does the water system intend to implement the demand management and supply planning components above?

Additional Information

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning?

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues:

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

Montgomery Co

2013 •

Incomplete

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

1. System Information

Contact Information

Water System Name: Montgomery Co PWSID: 03-62-010
Mailing Address: 724 Hydro Road

Mount Gilead, NC 27306 Ownership: County

Contact Person: Matthew H. Morris Title: Director of Public Utilities

Phone: 910-439-6198 Fax: 910-439-9488

Distribution System

Line Type Size Range (Inches) Estimated % of lines

 Asbestos Cement
 6, 16
 6.72 %

 Ductile Iron
 6-24
 9.64 %

 Polyvinyl Chloride
 2-12
 83.64 %

What are the estimated total miles of distribution system lines? 470 Miles

How many feet of distribution lines were replaced during 2013? 0 Feet

How many feet of new water mains were added during 2013? 0 Feet

How many meters were replaced in 2013? 50

How old are the oldest meters in this system? 20 Year(s)

How many meters for outdoor water use, such as irrigation, are not billed for sewer services? 0

What is this system's finished water storage capacity? 3.9200 Million Gallons

Has water pressure been inadequate in any part of the system since last update? No

Programs

Does this system have a program to work or flush hydrants? Yes, As Needed

Does this system have a valve exercise program? Yes, As Needed

Does this system have a cross-connection program? Yes

Does this system have a program to replace meters? Yes

Does this system have an active water conservation public education program? No

Does this system have a leak detection program? No

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? $0.0000\,MGD$ For how many connections? 0

Does this system have an interconnection with another system capable of providing water in an emergency? $\,$ No

Crossing Lake Tillery is a challenge to establish a connection with our closest neighboring system. IBT limitations also present challenges for interconnections. Plans are to evaluate several options including: Norwood; Stanly County; Randolph County/Seagrove/Asheboro; Moore County; and Richmond County. Each option feasibility and cost estimates will be evaluated.

2. Water Use Information

Service Area

Sub-Basin(s) % of Service Population County(s) % of Service Population

 Yadkin River (18-1)
 86 %
 Montgomery
 100 %

Deep River (02-2) 10 % Lumber River (09-1) 3 % 1 %

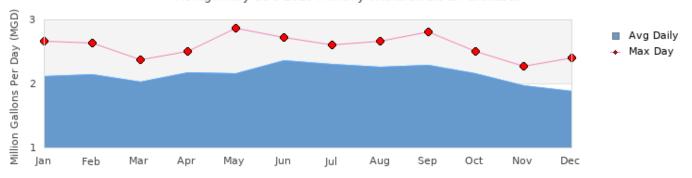
What was the year-round population served in 2013? 14,044 Has this system acquired another system since last report? No

Water Use by Type

Type of Use	Metered Connections	Metered Average Use (MGD)	Non-Metered Connections	Non-Metered Estimated Use (MGD)
Residential	5,401	0.4460	0	0.0000
Commercial	139	0.2770	0	0.0000
Industrial	0	0.0000	0	0.0000
Institutional	0	0.0000	0	0.0000

How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 0.0340 MGD

Water Sales


Purchaser	PWSID	Average Daily Sold (MGD)	Days	Contract			Required to comply with water	Pipe Size(s)	Use
Purchaser			Used	MGD	Expiration	Recurring	use restrictions?	(Inches)	Туре
Carolina Forest	03-62-106	0.0200	365	0.0500	2040	Yes	Yes	12	Regular
Town of Biscoe	03-62-035	0.2330	365	0.7850	2045	Yes	Yes	16,12	Regular
Town of Candor	03-62-030	0.1140	365	0.1500	2045	Yes	Yes	12, 8	Regular
Town of Mt Gilead	03-62-015	0.0810	365	0.1700	2045	Yes	Yes	24,20	Regular
Town of Robbins	03-63-015	0.1500	365	0.2500	2014	Yes	Yes	10	Regular
Town of Star	03-62-025	0.0680	365	0.1230	2045	Yes	Yes	8, 12	Regular
Town of Troy	03-62-020	0.4550	365	0.9030	2045	Yes	Yes	20,16	Regular
Wood Run	03-62-107	0.0600	365	0.0500	2040	Yes	Yes	12	Regular

3. Water Supply Sources

Monthly Withdrawals & Purchases

	Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)
Jan	2.1170	2.6590	May	2.1600	2.8710	Sep	2.2930	2.8180
Feb	2.1490	2.6410	Jun	2.3600	2.7240	Oct	2.1530	2.5040
Mar	2.0230	2.3800	Jul	2.3090	2.6110	Nov	1.9660	2.2750
Apr	2.1680	2.5120	Aug	2.2510	2.6690	Dec	1.8830	2.4020

Montgomery Co's 2013 Monthly Withdrawals & Purchases

Surface Water Sources

Stream	Reservoir	Average D	aily Withdrawal	Maximum Day Withdrawal (MGD)	Available Raw Water Supply		Usable On-Stream Raw Water Supply
		MGD	Days Used		MGD	* Qualifier	Storage (MG)
Pee Dee River	Lake Tillery	2.1530	365	2.8710	6.0000	С	774.0000

^{*} Qualifier: C=Contract Amount, SY20=20-year Safe Yield, SY50=50-year Safe Yield, F=20% of 7Q10 or other instream flow requirement, CUA=Capacity Use Area Permit

Surface Water Sources (continued)

Stream Reservoir (sq mi) Metered? Sub-Basin County Offline	Туре	Type
Change Drainage Area Materal Cuth Basin County Year	Use	

What is this system's off-stream raw water supply storage capacity? 6 Million gallons

Are surface water sources monitored? Yes, Daily

Are you required to maintain minimum flows downstream of its intake or dam? No

Does this system anticipate transferring surface water between river basins? Yes

IBT occurs with the following:

Sale of water to customers and the Town of Robbins in the Deep River Basin (02-2)

Sale of water to customers in the Lumber River Basin (09-1)

Sale of water to customers in the Uwharrie River Basin (18-3)

Water Purchases From Other Systems

Seller	PWSID	Average Daily Purchased	Days		Contract		Required to comply with water	Pipe Size(s)	Use
Sellel	FWSID	(MGD)	Used	MGD	Expiration	Recurring	use restrictions?	(Inches)	Type
Town of Troy	03-62-020	0.0000	365	0.0000	2045	Yes	Yes	8, 12	Regular

This is a buy-back scenario of 0.111 MGD. I did not put this number in this program because it will show this as available water supply in the planning section of this report.

Water Treatment Plants

Plant Name
Permitted Capacity (MGD)
Is Raw Water Metered? Is Finished Water Ouput Metered? Source

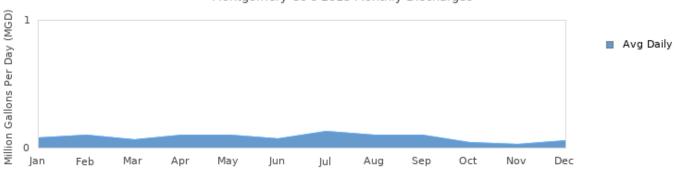
Montgomery County WTP
6.0000
Yes
Yes
Lake Tillery

Did average daily water production exceed 80% of approved plant capacity for five consecutive days during 2013? No

If yes, was any water conservation implemented?

Did average daily water production exceed 90% of approved plant capacity for five consecutive days during 2013? No

If yes, was any water conservation implemented?


Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? No

4. Wastewater Information

Monthly Discharges

	Average Daily Discharge (MGD)		Average Daily Discharge (MGD)		Average Daily Discharge (MGD)
Jan	0.0740	May	0.0960	Sep	0.1000
Feb	0.0950	Jun	0.0700	Oct	0.0390
Mar	0.0640	Jul	0.1260	Nov	0.0270
Apr	0.0970	Aug	0.0990	Dec	0.0570

Montgomery Co's 2013 Monthly Discharges

How many water service connections with septic systems does this system have? 4,085

Are there plans to build or expand wastewater treatment facilities in the next 10 years? Yes

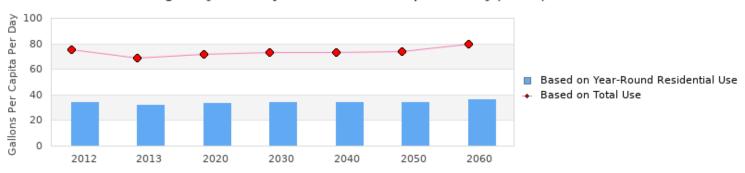
Currently, the wastewater treatment facilities at the County's WTP are undersized and are being upgraded to match the 6 MGD capacity of the WTP. The average daily discharges above represent the County's discharge from the wastewater treatment facility at the WTP.

300		 -	
		er P	

Permit Number	Permitted Capacity (MGD)	Design Capacity (MGD)	Average Annual Daily Discharge (MGD)	Maximum Day Discharge (MGD)	Receiving Stream	Receiving Basin
NC0080322	0.4700	0.3800	0.0780	0.2760	Unamed Trib. to Clarks Creek	Yadkin River (18- 1)
Wastewater Inter	connections					
		PWSID	T. m.a	Average Da	aily Amount	Contract
Water System		PWSID	Type	MGD	Days Used	Maximum (MGD)
Town of Candor		03-62-030	Discharging	0.0230	365	0.0000
Town of Troy		03-62-020	Discharging	0.0030	365	0.0000

5. Planning

Projections


	2013	2020	2030	2040	2050	2060
Year-Round Population	14,044	14,642	15,699	16,885	18,071	18,071
Seasonal Population	0	0	0	0	0	0
Residential	0.4460	0.4900	0.5270	0.5670	0.6100	0.6560
Commercial	0.2770	0.2970	0.3260	0.3600	0.3960	0.4350
Industrial	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Institutional	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
System Process	0.0340	0.0350	0.0360	0.0370	0.0380	0.0390
Unaccounted-for	0.2150	0.2330	0.2520	0.2740	0.2970	0.3210

Residential Growth = 7.5% per 10 years Commercial Growth = 10% per 10 years

	2013	2020	2030	2040	2050	2060
Surface Water Supply	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Ground Water Supply	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Purchases	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Future Supplies		0.0000	0.0000	0.0000	0.0000	0.0000
Total Available Supply (MGD)	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Service Area Demand	0.9720	1.0550	1.1410	1.2380	1.3410	1.4510
Sales	1.1810	2.4910	2.4910	2.4910	2.4910	2.4910
Future Sales		0.0000	0.0000	0.0000	0.0000	0.0000
Total Demand (MGD)	2.1530	3.5460	3.6320	3.7290	3.8320	3.9420
Demand as Percent of Supply	36%	59%	61%	62%	64%	66%

Montgomery Co's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

Your long-term water demand is 32 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here.

Are there other demand management practices you will implement to reduce your future supply needs?

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs?

How does the water system intend to implement the demand management and supply planning components above?

Additional Information

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning?

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues:

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

Montgomery Co

2014 🔻

Complete

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled PROVISIONAL have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

1. System Information

Contact Information

Water System Name: Montgomery Co PWSID: 03-62-010 724 Hydro Road Mailing Address: County

Ownership: Mount Gilead, NC 27306

Matthew H. Morris Director of Public Utilities Contact Person: Title:

Phone: 910-439-6198 Fax: 910-439-9488

Distribution System

Estimated % of lines Line Type Size Range (Inches) Asbestos Cement 6, 16 6.57 %

6-24 Ductile Iron 9 60 % Polyvinyl Chloride 2-12 83 83 %

What are the estimated total miles of distribution system lines? 472 Miles

How many feet of distribution lines were replaced during 2014? 0 Feet

How many feet of new water mains were added during 2014? 13,452 Feet

How many meters were replaced in 2014? 50

How old are the oldest meters in this system? 21 Year(s)

How many meters for outdoor water use, such as irrigation, are not billed for sewer services? 0

What is this system's finished water storage capacity? 3.9200 Million Gallons

Has water pressure been inadequate in any part of the system since last update? No

Programs

Does this system have a program to work or flush hydrants? Yes, As Needed

Does this system have a valve exercise program? Yes, As Needed

Does this system have a cross-connection program? Yes

Does this system have a program to replace meters? Yes

Does this system have a plumbing retrofit program? No

Does this system have an active water conservation public education program? No

Does this system have a leak detection program? No

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? 0.0000 MGD For how many connections? 0

Does this system have an interconnection with another system capable of providing water in an emergency? No

Crossing Lake Tillery is a challenge to establish a connection with our closest neighboring system. IBT limitations also present challenges for interconnections. Plans are to evaluate several options including: Norwood; Stanly County; Randolph County/Seagrove/Asheboro; Moore County; and Richmond County. Each option feasibility and cost estimates will be evaluated.

The County does have the ability to buy back water from the Towns giving us access to their storage during emergency situations.

2. Water Use Information

Service Area

Sub-Basin(s) % of Service Population County(s) % of Service Population

Yadkin River (18-1) 86 % Montgomery 100 %

Deep River (02-2)

https://www.ncwater.org/Water_Supply_Planning/Local_Water_Supply_Plan/report.php?pwsid=03-62-010

Lumber River (09-1) 3 % Uwharrie River (18-3) 1 %

What was the year-round population served in 2014? 14,136
Has this system acquired another system since last report? No

Water Use by Type

Type of Use	Metered Connections	Metered Average Use (MGD)	Non-Metered Connections	Non-Metered Estimated Use (MGD)
Residential	5,437	0.4660	0	0.0000
Commercial	137	0.2790	0	0.0000
Industrial	0	0.0000	0	0.0000
Institutional	0	0.0000	0	0.0000

How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 0.0360 MGD

Water Sales

Develope	DWOLD	Average	Days	Contract			Required to	Pipe Size(s)	Use
Purchaser	PWSID	Daily Sold (MGD)	Used	MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Type
Carolina Forest	03-62-106	0.0240	365	0.0500	2040	Yes	Yes	12	Regular
Town of Biscoe	03-62-035	0.2470	365	0.8000	2045	Yes	Yes	16,12	Regular
Town of Candor	03-62-030	0.1330	365	0.1470	2045	Yes	Yes	12, 8	Regular
Town of Mt Gilead	03-62-015	0.0720	365	0.0900	2045	Yes	Yes	24,20	Regular
Town of Robbins	03-63-015	0.1540	365	0.2500	2019	Yes	Yes	10	Regular
Town of Star	03-62-025	0.0680	365	0.0980	2045	Yes	Yes	8, 12	Regular
Town of Troy	03-62-020	0.4300	365	0.9030	2045	Yes	Yes	20,16	Regular
Wood Run	03-62-107	0.0610	365	0.0500	2040	Yes	Yes	12	Regular

Carolina Forest and Wood Run are under one contract with a combined maximum usage of 0.100MGD. Since Carolina Forest and Wood Run did not have plans submitted at the time of this review, the combined maximum usage is divided equally between the two systems for simplicity and to account for demand on the county system.

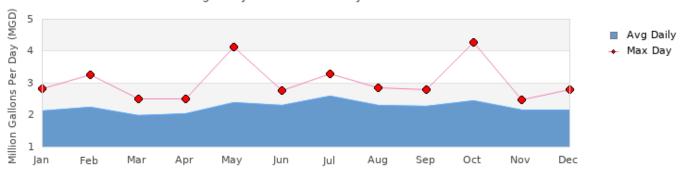
The towns of Candor, Star, Biscoe, Troy and Mount Gilead all renewed contracts in 2005 for 40 years. Collectively they are not to exceed 60 MG per month.

The contract value of 0.090 MGD is the amount of water Mount Gilead would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.800 MGD is the amount of water Biscoe would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.147 MGD is the amount of water Candor would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.098 MGD is the amount of water Star would need to purchase in order not to exceed 80% of supply by 2040.


The contract value of 0.903 MGD is the amount of water Troy would need to purchase in order not to exceed 80% of supply by 2040

3. Water Supply Sources

Monthly Withdrawals & Purchases

	Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)
Jan	2.1090	2.8260	May	2.3720	4.1150	Sep	2.2750	2.7990
Feb	2.2420	3.2520	Jun	2.2970	2.7660	Oct	2.4310	4.2620
Mar	1.9880	2.5030	Jul	2.5710	3.2900	Nov	2.1500	2.4760
Apr	2.0340	2.5040	Aug	2.2870	2.8580	Dec	2.1500	2.7880

Montgomery Co's 2014 Monthly Withdrawals & Purchases

Surface Water Sources

Pee Dee River	Lake Tillery	2.2420	365	4.2620	6.0000	С	774.0000
		MGD	Days Used	Withdrawar (WGD)	MGD	* Qualifier	Storage (MG)
Stream	Reservoir	Average Daily Withdrawal		Maximum Day Withdrawal (MGD)	Available Raw Water Supply		Usable On-Stream Raw Water Supply

^{*} Qualifier: C=Contract Amount, SY20=20-year Safe Yield, SY50=50-year Safe Yield, F=20% of 7Q10 or other instream flow requirement, CUA=Capacity Use Area Permit

Surface Water Sources (continued)

Pee Dee River	Lake Tillery	4,600	Yes	Yadkin River (18-1)	Montgomery		Regular
Stream	Reservoir	Drainage Area (sq mi)	Metered?	Sub-Basin	County	Year Offline	Use Type

What is this system's off-stream raw water supply storage capacity? 0 Million gallons

Are surface water sources monitored? Yes, Daily

Are you required to maintain minimum flows downstream of its intake or dam? No

Does this system anticipate transferring surface water between river basins? $\mbox{ Yes }$

IBT occurs with the following:

Sale of water to customers and the Town of Robbins in the Deep River Basin (02-2)

Sale of water to customers in the Lumber River Basin (09-1)

Water Purchases From Other Systems

Town of Troy	03-62-020	0.0000	0	0.0000	2045	Yes	Yes	8, 12	Emergency
Seller	PWSID	Daily Purchased (MGD)	Used	MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Type
Colles DWCID	Average	Days		Contract		Required to	Pipe Size(s)	Use	

This is a buy-back scenario of 0.107 MGD. I did not put this number in the program because it will show as available water supply in the planning section of this report.

Water Treatment Plants

Plant Name Permitted Capacity (MGD) Is Raw Water Metered? Is Finished Water Ouput Metered? Source

Montgomery County WTP 6.0000 Yes Yes Lake Tillery

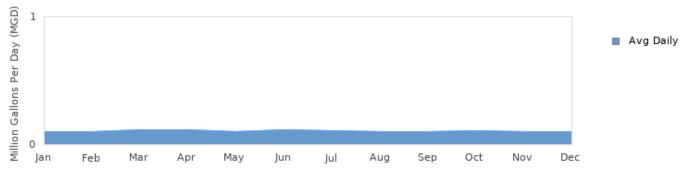
Did average daily water production exceed 80% of approved plant capacity for five consecutive days during 2014? No

If yes, was any water conservation implemented?

Did average daily water production exceed 90% of approved plant capacity for five consecutive days during 2014? $\,$ No

If yes, was any water conservation implemented?

Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? No


4. Wastewater Information

Monthly Discharges

Average Daily Average Daily Average Daily

Discharge (MGD)			Discharge (MGD)		Discharge (MGD)	
Jan	0.0990	May	0.1010	Sep	0.1000	
Feb	0.1000	Jun	0.1120	Oct	0.1060	
Mar	0.1100	Jul	0.1080	Nov	0.0980	
Apr	0.1120	Aug	0.1000	Dec	0.1010	

Montgomery Co's 2014 Monthly Discharges

How many sewer connections does this system have? 156

How many water service connections with septic systems does this system have? $\,$ 3,978

Are there plans to build or expand wastewater treatment facilities in the next 10 years? Yes

Capacity Improvements are under construction for our Alum Sludge Treatment system at the WTP. The values above represent the discharges from this system under our NPDES Permit NC0080322. The sewer service connection listed represent two small collection systems owned and operated by the County. However, local municipalities accept and treat the waste water under their respective NPDES Permits.

Wast		

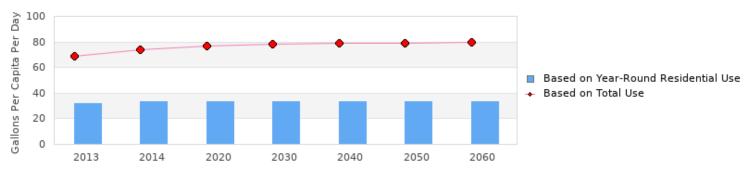
Permit Number	Permitted Capacity (MGD)	Design Capacity (MGD)	Average Annual Daily Discharge (MGD)	Maximum Day Discharge (MGD)	Receiving Stream	Receiving Basin
NC0080322	0.2880	0.3800	0.0760	0.2700	Unamed Trib. to Clarks Creek	Yadkin River (18- 1)
Wastewater Inter	connections					
W 1 0 1		PWSID	Tuno	Average Da	Average Daily Amount	
Water System		PWSID	Type	MGD	Days Used	Maximum (MGD)
Town of Candor		03-62-030	Discharging	0.0250	365	0.0000
Town of Troy		03-62-020	Discharging	0.0030	365	0.0000

5. Planning

Projections

	2014	2020	2030	2040	2050	2060
Year-Round Population	14,136	14,687	15,642	16,659	17,742	18,895
Seasonal Population	0	0	0	0	0	0
Residential	0.4660	0.4840	0.5160	0.5490	0.5850	0.6230
Commercial	0.2790	0.3120	0.3430	0.3770	0.4150	0.4570
Industrial	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Institutional	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
System Process	0.0360	0.0400	0.0420	0.0440	0.0460	0.0480
Unaccounted-for	0.2720	0.2910	0.3140	0.3380	0.3640	0.3930

Residential Customer Growth = 6.5% per 10 years


Commercial Customer Growth = 10% per 10 years

An increase in system process water is anticipated as flushing increases and additional data is collected

	2014	2020	2030	2040	2050	2060
Surface Water Supply	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Ground Water Supply	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Purchases	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Future Supplies		0.0000	0.0000	0.0000	0.0000	0.0000
Total Available Supply (MGD)	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Service Area Demand	1.0530	1.1270	1.2150	1.3080	1.4100	1.5210
Sales	1.1890	2.3990	2.3990	2.3990	2.3990	2.3990
Future Sales		0.0000	0.0000	0.0000	0.0000	0.0000
Total Demand (MGD)	2.2420	3.5260	3.6140	3.7070	3.8090	3.9200
Demand as Percent of Supply	37%	59%	60%	62%	63%	65%

Montgomery Co's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

Your long-term water demand is 33 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here. Montgomery County has implemented the following practices that could reduce per capita water demand: 1) meter replacement program; 2) increasing block rates.

Are there other demand management practices you will implement to reduce your future supply needs?

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs? Possible interconnections with one of the following systems are continually being explored: Randolph County/Asheboro/Segrove; Richmond County; Norwood; Davidson County; Moore County

How does the water system intend to implement the demand management and supply planning components above?

Additional Information

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning?

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues:

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

Montgomery Co

2015 •

Complete

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

1. System Information

Contact Information

Water System Name: Montgomery Co PWSID: 03-62-010

Mailing Address: 724 Hydro Road

Name Cilead NC 27200

Ownership: County

Mount Gilead, NC 27306 Ownership: Coun

Contact Person: Matthew H. Morris Title: Director of Public Utilities

Phone: 910-439-6198 Fax: 910-439-9488

Distribution System

Line Type Size Range (Inches) Estimated % of lines

Asbestos Cement 6, 16 6.57 %

Ductile Iron 9 60 %

Polyvinyl Chloride 2-12 83.83 %

What are the estimated total miles of distribution system lines? 472 Miles

How many feet of distribution lines were replaced during 2015? 0 Feet

How many feet of new water mains were added during 2015? 0 Feet

How many meters were replaced in 2015? 50

How old are the oldest meters in this system? 22 Year(s)

How many meters for outdoor water use, such as irrigation, are not billed for sewer services? 0

What is this system's finished water storage capacity? 3.9200 Million Gallons

Has water pressure been inadequate in any part of the system since last update? No

Programs

Does this system have a program to work or flush hydrants? Yes, As Needed

Does this system have a valve exercise program? Yes, As Needed

Does this system have a cross-connection program? Yes

Does this system have a program to replace meters? Yes

Does this system have a plumbing retrofit program? No

Does this system have an active water conservation public education program? No

Does this system have a leak detection program? No

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? $\,\,$ 0.0000 MGD $\,\,$ For how many connections? $\,$ 0

Does this system have an interconnection with another system capable of providing water in an emergency? $\,$ No

Interconnecting with neighboring systems is challenging due to crossing Lake Tillery to the west and IBT issues to the east. Neighbors to the north and south are at significant distances.

2. Water Use Information

Service Area

Sub-Basin(s) % of Service Population County(s) % of Service Population

Yadkin River (18-1) 86 % Montgomery 100 %

Deep River (02-2) 10 %
Lumber River (09-1) 3 %
Uwharrie River (18-3) 1 %

What was the year-round population served in 2015? 14,432 Has this system acquired another system since last report? No

Water Use by Type

Type of Use	Metered Connections	Metered Average Use (MGD)	Non-Metered Connections	Non-Metered Estimated Use (MGD)
Residential	5,551	0.4810	0	0.0000
Commercial	140	0.2940	0	0.0000
Industrial	0	0.0000	0	0.0000
Institutional	0	0.0000	0	0.0000

How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 0.0360 MGD

Water Sales

Purchaser	PWSID	Average	Days Used	Contract			Required to comply with water	Pipe Size(s)	Use
Pulchasei	PWSID	Daily Sold (MGD)		MGD	Expiration	Recurring	use restrictions?	(Inches)	Type
Carolina Forest	03-62-106	0.0500	365	0.0500	2040	Yes	Yes	12	Regular
Town of Biscoe	03-62-035	0.2960	365	0.8000	2045	Yes	Yes	16,12	Regular
Town of Candor	03-62-030	0.1270	365	0.1540	2045	Yes	Yes	12, 8	Regular
Town of Mt Gilead	03-62-015	0.0930	365	0.0900	2045	Yes	Yes	24,20	Regular
Town of Robbins	03-63-015	0.1660	365	0.2500	2019	Yes	Yes	10	Regular
Town of Star	03-62-025	0.0590	365	0.1130	2045	Yes	Yes	8, 12	Regular
Town of Troy	03-62-020	0.4340	365	0.9030	2045	Yes	Yes	20,16	Regular
Wood Run	03-62-107	0.0660	365	0.0500	2040	Yes	Yes	12	Regular

It is our understanding that Carolina Forest battled severe leaks throughout the year, causing their demand to be higher than normal.

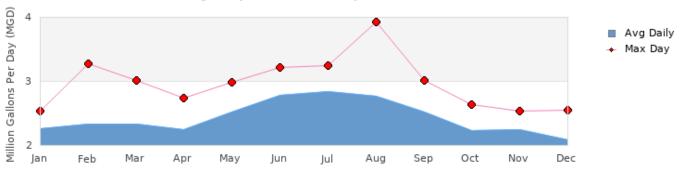
The towns of Candor, Star, Biscoe, Troy and Mount Gilead all renewed contracts in 2005 for 40 years. They are not to exceed 60 MG per month.

The contract value of 0.8 MGD is the amount of water Biscoe would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.154 MGD is the amount of water Candor would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.113 MGD is the amount of water Star would need to purchase in order not to exceed 80% of supply by 2040.

The contract value of 0.903 MGD is the amount of water Troy would need to purchase in order not to exceed 80% of supply by 2040.


Mount Gilead had not submitted a plan update at the time of this plan review.

3. Water Supply Sources

Monthly Withdrawals & Purchases

	Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)
Jan	2.2570	2.5380	May	2.5130	2.9760	Sep	2.5190	3.0180
Feb	2.3340	3.2720	Jun	2.7850	3.2210	Oct	2.2250	2.6350
Mar	2.3220	3.0170	Jul	2.8350	3.2420	Nov	2.2380	2.5270
Apr	2.2470	2.7340	Aug	2.7650	3.9340	Dec	2.0750	2.5390

Montgomery Co's 2015 Monthly Withdrawals & Purchases

Surface Water Sources

Stream Reservoir	Average D	aily Withdrawal	Maximum Day	Available Raw Water Supply		Usable On-Stream Raw Water Supply	
	MGD	Days Used	Withdrawal (MGD)	MGD	* Qualifier	Storage (MG)	
Pee Dee River	Lake Tillery	2.4270	365	3.9350	6.0000	С	774.0000

^{*} Qualifier: C=Contract Amount, SY20=20-year Safe Yield, SY50=50-year Safe Yield, F=20% of 7Q10 or other instream flow requirement, CUA=Capacity Use Area Permit

Surface Water Sources (continued)

Pee Dee River	Lake Tillery	4,600	Yes	Yadkin River (18-1)	Montgomery		Regular
Stream	Reservoir	Drainage Area (sq mi)	Metered?	Sub-Basin	County	Year Offline	Use Type

What is this system's off-stream raw water supply storage capacity? 0 Million gallons

Are surface water sources monitored? Yes, Daily

Are you required to maintain minimum flows downstream of its intake or dam? No

Does this system anticipate transferring surface water between river basins? Yes

IBT occurs with:

Sale of water to the Town of Robbins - Deep River Basin (02-2)

Sale of water to customers in the Lumber River Basin (09-1)

Water Purchases From Other Systems

Town of Troy	03-62-020	0.0000	0	0.0000	2045	Yes	Yes	8, 12	Regular
Seller	PWSID	Daily Purchased (MGD)	Used	MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Туре
	Average	Days	Contract			Required to	Pipe Size(s)	Use	

This is a buy-back scenario of 0.093 MGD. I did not put this number in the program because it will show as available water supply in the planning section of this report.

Water Treatment Plants

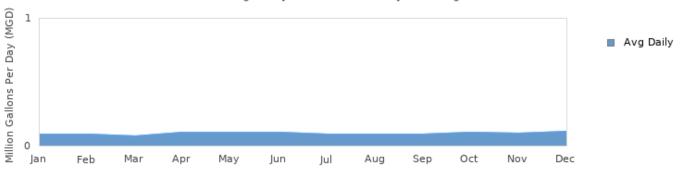
Plant Name	Permitted Capacity (MGD)	Is Raw Water Metered?	Is Finished Water Ouput Metered?	Source
Montgomery County WTP	6.0000	Yes	Yes	Lake Tillery

Did average daily water production exceed 80% of approved plant capacity for five consecutive days during 2015? No

If yes, was any water conservation implemented?

Did average daily water production exceed 90% of approved plant capacity for five consecutive days during 2015? No

If yes, was any water conservation implemented?


Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? No

4. Wastewater Information

Monthly Discharges

Average Daily Discharge (MGD)			Average Daily Discharge (MGD)		Average Daily Discharge (MGD)
Jan	0.0930	May	0.1060	Sep	0.0890
Feb	0.0910	Jun	0.1060	Oct	0.1020
Mar	0.0760	Jul	0.0920	Nov	0.1000
Apr	0.1050	Aug	0.0930	Dec	0.1120

Montgomery Co's 2015 Monthly Discharges

How many sewer connections does this system have? 155

How many water service connections with septic systems does this system have? 4,258

Are there plans to build or expand wastewater treatment facilities in the next 10 years? No

Our discharge is related to NPDES Permit No. 0080322 issued for the Alum Sludge Treatment facility located at the County WTP - not traditional waste water treatment associated with municipal sewer. The sewer service connections listed above are for two small collections systems operated by the County. Local municipalities accept and treat the waste water at their WWTPs.

	Perm	

Permit Number	Permitted Capacity (MGD)	Design Capacity (MGD)	Average Annual Daily Discharge (MGD)	Maximum Day Discharge (MGD)	Receiving Stream	Receiving Basin	
NC0080322	0.2880	0.3800	0.0710	0.2240	Unamed Trib. to Clarks Creek	Yadkin River (18- 1)	
Wastewater Intere	connections						
		PWSID	Time	Average Da	aily Amount	Contract	
Water System		PWSID	Type	MGD	Days Used	Maximum (MGD)	
Town of Candor		03-62-030	Discharging	0.0230	365	0.0000	
Town of Troy		03-62-020	Discharging	0.0030	365	0.0000	

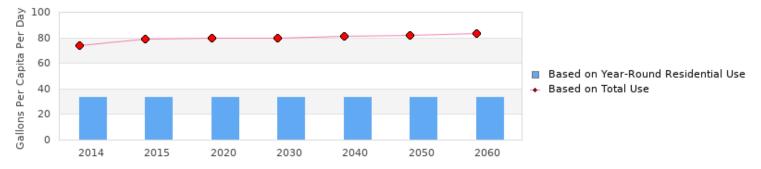
5. Planning

Projections

	2015	2020	2030	2040	2050	2060
Year-Round Population	14,432	14,900	15,870	16,900	18,000	19,170
Seasonal Population	0	0	0	0	0	0
Residential	0.4810	0.4970	0.5290	0.5630	0.6000	0.6390
Commercial	0.2940	0.3090	0.3400	0.3740	0.4110	0.4520
Industrial	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Institutional	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
System Process	0.0360	0.0400	0.0420	0.0440	0.0460	0.0480
Unaccounted-for	0.3250	0.3390	0.3650	0.3930	0.4240	0.4560

During 2015 the County waived tap fees to encourage connections. Hence the 2.1% growth in population served. However, this is not expected each year. Rather, the following growth rates are used for projections:

Residential Customer Growth = 6.5% per 10 years


Commercial Customer Growth = 10% per 10 years

Demand v/s Percent of Supply

	2015	2020	2030	2040	2050	2060
Surface Water Supply	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Ground Water Supply	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

11/29/2018	Local Water Supply Pla	inning - North Ca	rolina Division of	Water Resources		
Purchases	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Future Supplies		0.0000	0.0000	0.0000	0.0000	0.0000
Total Available Supply (MGD)	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Service Area Demand	1.1360	1.1850	1.2760	1.3740	1.4810	1.5950
Sales	1.2910	2.4290	2.4290	2.4290	2.4290	2.4290
Future Sales		0.0000	0.0000	0.0000	0.0000	0.0000
Total Demand (MGD)	2.4270	3.6140	3.7050	3.8030	3.9100	4.0240
Demand as Percent of Supply	40%	60%	62%	63%	65%	67%

Montgomery Co's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

Your long-term water demand is 33 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here. See Section 1 of the plan for practices that could reduce the per capita water demand.

Are there other demand management practices you will implement to reduce your future supply needs?

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs? Post 2015, Montgomery County will begin negotiations with Duke Energy Progress to increase our permitted withdrawal from Lake Tillery.

How does the water system intend to implement the demand management and supply planning components above?

Additional Information

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning?

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues:

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

Montgomery Co

2016 •

Complete

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

1. System Information

Contact Information

Water System Name: Montgomery Co PWSID: 03-62-010

Mailing Address: 724 Hydro Road

Name Cilead NC 27200

Ownership: County

Mount Gilead, NC 27306 Ownership: Cour

Contact Person: Matthew H. Morris Title: Director of Public Utilities

Phone: 910-439-6198 Fax: 910-439-9488

Distribution System

Line Type Size Range (Inches) Estimated % of lines

Asbestos Cement 6, 16 6.57 %

Ductile Iron 9 60 %

Polyvinyl Chloride 2-12 83.83 %

What are the estimated total miles of distribution system lines? 472 Miles

How many feet of distribution lines were replaced during 2016? 19,943 Feet

How many feet of new water mains were added during 2016? 0 Feet

How many meters were replaced in 2016? 0

How old are the oldest meters in this system? 23 Year(s)

How many meters for outdoor water use, such as irrigation, are not billed for sewer services? 0

What is this system's finished water storage capacity? 3.9200 Million Gallons

Has water pressure been inadequate in any part of the system since last update? No

Programs

Does this system have a program to work or flush hydrants? Yes, As Needed

Does this system have a valve exercise program? Yes, As Needed

Does this system have a cross-connection program? Yes

Does this system have a program to replace meters? Yes

Does this system have a plumbing retrofit program? No

Does this system have an active water conservation public education program? No

Does this system have a leak detection program? No

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? $\,\,$ 0.0000 MGD $\,\,$ For how many connections? $\,$ 0

Does this system have an interconnection with another system capable of providing water in an emergency? No

Interconnecting with neighboring systems is challenging due to crossing Lake Tillery to the west and IBT issues to the east. Neighbors to the north and south are at significant distances.

2. Water Use Information

Service Area

Sub-Basin(s) % of Service Population County(s) % of Service Population

Yadkin River (18-1) 86 % Montgomery 100 %

 Deep River (02-2)
 10 %

 Lumber River (09-1)
 3 %

 Uwharrie River (18-3)
 1 %

What was the year-round population served in 2016? 14,417 Has this system acquired another system since last report? No

Water Use by Type

Type of Use	Metered Connections	Metered Average Use (MGD)	Non-Metered Connections	Non-Metered Estimated Use (MGD)
Residential	5,574	0.4620	0	0.0000
Commercial	147	0.3000	0	0.0000
Industrial	0	0.0000	0	0.0000
Institutional	0	0.0000	0	0.0000

How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 0.0300 MGD

Water Sales

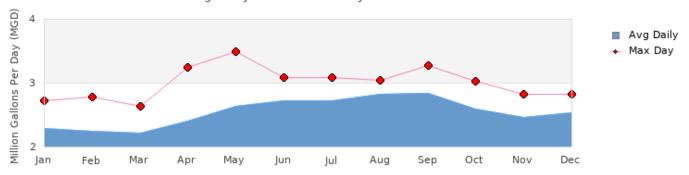
Purchaser	PWSID	Average	Days		Contract		Required to	Pipe Size(s)	Use
Pulchasei	PWSID	Daily Sold (MGD)	Used	MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Type
Carolina Forest	03-62-106	0.0410	365	0.0500	2040	Yes	Yes	12	Regular
Town of Biscoe	03-62-035	0.3070	365	0.9000	2045	Yes	Yes	16,12	Regular
Town of Candor	03-62-030	0.1160	365	0.1700	2045	Yes	Yes	12, 8	Regular
Town of Mt Gilead	03-62-015	0.1100	365	0.1100	2045	Yes	Yes	24,20	Regular
Town of Robbins	03-63-015	0.1890	365	0.2500	2019	Yes	Yes	10	Regular
Town of Star	03-62-025	0.0600	365	0.1130	2045	Yes	Yes	8, 12	Regular
Town of Troy	03-62-020	0.3910	365	1.0000	2045	Yes	Yes	20,16	Regular
Wood Run	03-62-107	0.0640	365	0.0500	2040	Yes	Yes	12	Regular

The towns of Candor, Star, Biscoe, Troy and Mount Gilead all renewed contracts in 2005 for 40 years. They are not to exceed 60 MG per month.

The contract value of 0.9 MGD is the amount of water Biscoe would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.17 MGD is the amount of water Candor would need to purchase in order to keep their projected demand below or around 80% of supply.

The town of Star had not submitted their plan update at the time this plan was reviewed.

The contract value of 1.0 MGD is the amount of water Troy would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.11 MGD is the amount of water Mount Gilead would need to purchase in order to keep their projected demand below or around 80% of supply.


The total amount of contract water sales to the five (5) systems noted above is 2.293 MGD. This is slightly above the combined amount the county has committed to. Adjustments to supply and/or demand will need to be addressed in the future.

3. Water Supply Sources

Monthly Withdrawals & Purchases

	Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)
Jan	2.2840	2.7240	May	2.6350	3.4890	Sep	2.8350	3.2740
Feb	2.2450	2.7800	Jun	2.7260	3.0870	Oct	2.5840	3.0230
Mar	2.2120	2.6280	Jul	2.7270	3.0870	Nov	2.4630	2.8180
Apr	2.4060	3.2500	Aug	2.8160	3.0370	Dec	2.5310	2.8260

Montgomery Co's 2016 Monthly Withdrawals & Purchases

Surface Water Sources

Pee Dee River	Lake Tillery	2.5470	365	0.0000	6.0000	С	774.0000
MGD	Days Used	Withdrawar (WGD)	MGD	* Qualifier	Storage (MG)		
Stream Reservoir	Average D	aily Withdrawal	Maximum Day Withdrawal (MGD)	Available Raw Water Supply		Usable On-Stream Raw Water Supply	

^{*} Qualifier: C=Contract Amount, SY20=20-year Safe Yield, SY50=50-year Safe Yield, F=20% of 7Q10 or other instream flow requirement, CUA=Capacity Use Area Permit

Surface Water Sources (continued)

Pee Dee River	Lake Tillery	4,600	Yes	Yadkin River (18-1)	Montgomery		Regular
Stream	Reservoir	Drainage Area (sq mi)	Metered?	Sub-Basin	County	Year Offline	Use Type

What is this system's off-stream raw water supply storage capacity? 0 Million gallons

Are surface water sources monitored? Yes, Daily

Are you required to maintain minimum flows downstream of its intake or dam? No

Does this system anticipate transferring surface water between river basins? $\mbox{ Yes }$

IBT occurs with:

Sale of water to the Town of Robbins - Deep River Basin (02-2)

Sale of water to the customers in the Lumber River Basin (09-1)

Water Purchases From Other Systems

Town of Troy	03-62-020	0.0000	0	0.0000	2045	Yes	Yes	8, 12	Regular
Seller	PWSID	Daily Purchased (MGD)	Days Used	MGD	Expiration	Recurring	comply with water use restrictions?	Pipe Size(s) (Inches)	Use Type
		Average	D		Contract		Required to	D: O:(-)	11

This is a buy-back scenario.

Water Treatment Plants

Plant Name

Permitted Capacity (MGD)

Is Raw Water Metered?

Is Finished Water Ouput Metered?

Source

Montgomery County WTP

6.0000

Yes

Yes

Lake Tillery

Did average daily water production exceed 80% of approved plant capacity for five consecutive days during 2016? No

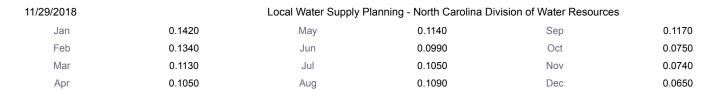
If yes, was any water conservation implemented?

 $\hbox{Did average daily water production exceed } 90\% \hbox{ of approved plant capacity for five consecutive days during } 2016? \hbox{ No}$

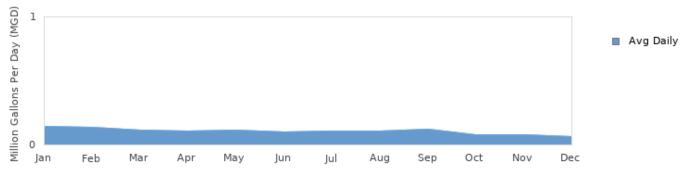
If yes, was any water conservation implemented?

Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? No

4. Wastewater Information


Monthly Discharges

Average Daily
Discharge (MGD)


Average Daily
Discharge (MGD)

Discharge (MGD)

Discharge (MGD)

Montgomery Co's 2016 Monthly Discharges

How many sewer connections does this system have? 155

How many water service connections with septic systems does this system have? 4,258

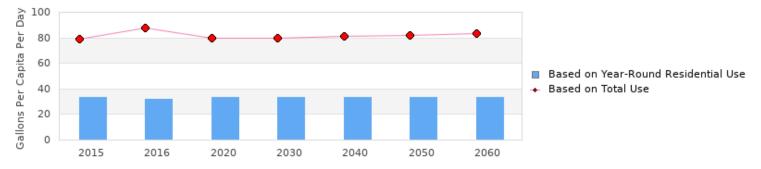
Are there plans to build or expand wastewater treatment facilities in the next 10 years? No

Wastewater Discharged is related to NPDES permit No. 0080322 issued for Alum Sludge Treatment Facility located at Montgomery County WTP. The sewer service connections listed above are for two small collections systems operated by the County. Local municipalities accept and treat the wastewater at their WWTPs.

Number	Capacity (MGD)	Capacity (MGD)	Daily Discharge (MGD)	Discharge (MGD)	Receiving Stream	Receiving Basin	
NC0080322	0.2880	0.3800	0.0790		Unamed Trib. to Clarks Creek	Yadkin River (18- 1)	
Wastewater Inter	connections						
Water Syste	em	PWSID	Type	Average Daily Amount		Contract	
water Systi	CIII	FWSID	туре	MGD	Days Used	Maximum (MGD)	
Town of Candor		03-62-030	Discharging	0.0210	365	0.0000	
Town of Troy		03-62-020	Discharging	0.0040	365	0.0000	

5. Planning

Pro		


	2016	2020	2030	2040	2050	2060
Year-Round Population	14,417	14,900	15,870	16,900	18,000	19,170
Seasonal Population	0	0	0	0	0	0
Residential	0.4620	0.4970	0.5290	0.5630	0.6000	0.6390
Commercial	0.3000	0.3090	0.3400	0.3740	0.4110	0.4520
Industrial	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Institutional	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
System Process	0.0300	0.0400	0.0420	0.0440	0.0460	0.0480
Unaccounted-for	0.4735	0.3390	0.3650	0.3930	0.4240	0.4560
Demand v/s Percent of Supply						

Demand v/s Percent of Supply

	2016	2020	2030	2040	2050	2060
Surface Water Supply	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Ground Water Supply	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

11/29/2018	Local Water Supply Pla	Local Water Supply Planning - North Carolina Division of Water Resources									
Purchases	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000					
Future Supplies		0.0000	0.0000	0.0000	0.0000	0.0000					
Total Available Supply (MGD)	6.0000	6.0000	6.0000	6.0000	6.0000	6.0000					
Service Area Demand	1.2655	1.1850	1.2760	1.3740	1.4810	1.5950					
Sales	1.2745	2.6570	2.6570	2.6570	2.6570	2.6570					
Future Sales		0.0000	0.0000	0.0000	0.0000	0.0000					
Total Demand (MGD)	2.5400	3.8420	3.9330	4.0310	4.1380	4.2520					
Demand as Percent of Supply	42%	64%	66%	67%	69%	71%					

Montgomery Co's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

Your long-term water demand is 32 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here.

Are there other demand management practices you will implement to reduce your future supply needs?

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs?

How does the water system intend to implement the demand management and supply planning components above?

Additional Information

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning?

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues:

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

Montgomery Co

2017

Complete

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled PROVISIONAL have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

1. System Information

Contact Information

Water System Name: Montgomery Co PWSID: 03-62-010 724 Hydro Road Mailing Address: County

Ownership: Mount Gilead, NC 27306

Contact Person: Matthew H. Morris Director of Public Utilities Title:

Phone: 910-439-6198 Fax: 910-439-9488

Distribution System

Estimated % of lines Size Range (Inches) Line Type Asbestos Cement 6, 16 3.86 % 6-24 Ductile Iron 6.13 % 2 Galvanized Iron 0.05 % UKWN Other 0.35 % 2-12 89.61 % Polyvinyl Chloride

What are the estimated total miles of distribution system lines? 365 Miles

How many feet of distribution lines were replaced during 2017? 788 Feet

How many feet of new water mains were added during 2017? 0 Feet

How many meters were replaced in 2017? 0

How old are the oldest meters in this system? 23 Year(s)

How many meters for outdoor water use, such as irrigation, are not billed for sewer services? 0

What is this system's finished water storage capacity? 3.9200 Million Gallons

Has water pressure been inadequate in any part of the system since last update? No

Programs

Does this system have a program to work or flush hydrants? Yes, As Needed

Does this system have a valve exercise program? Yes, As Needed

Does this system have a cross-connection program? Yes

Does this system have a program to replace meters? Yes

Does this system have a plumbing retrofit program? No

Does this system have an active water conservation public education program? No

Does this system have a leak detection program? No

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? 0.0000 MGD For how many connections? 0

Does this system have an interconnection with another system capable of providing water in an emergency? No

Interconnecting with neighboring systems is challenging due to crossing Lake Tillery to the west and IBT issues to the east. Neighbors to the north and south are at significant distances.

2. Water Use Information

Service Area

Sub-Basin(s) % of Service Population County(s) % of Service Population

Yadkin River (18-1) 86 % Montgomery 100 %

Deep River (02-2) 10 % Lumber River (09-1) 3 % Uwharrie River (18-3) 1 %

What was the year-round population served in 2017? 14,473
Has this system acquired another system since last report? No

Water Use by Type

Type of Use	Metered Connections	Metered Average Use (MGD)	Non-Metered Connections	Non-Metered Estimated Use (MGD)
Residential	5,610	0.4660	0	0.0000
Commercial	149	0.2820	0	0.0000
Industrial	0	0.0000	0	0.0000
Institutional	0	0.0000	0	0.0000

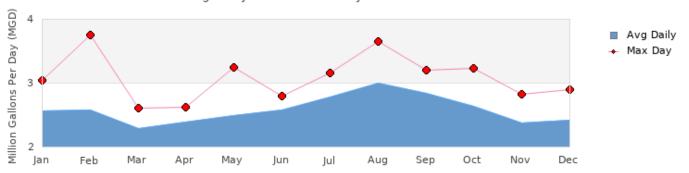
How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 0.0250 MGD

Water Sales

Purchaser PWSII	DWOLD	Average	Days	Contract			Required to	Pipe Size(s)	Use
Purchaser	PWSID	Daily Sold (MGD)	Used	MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Type
Carolina Forest	03-62-106	0.0500	365	0.0500	2040	Yes	Yes	8	Regular
Town of Biscoe	03-62-035	0.3160	365	0.9000	2045	Yes	Yes	16,12	Regular
Town of Candor	03-62-030	0.1230	365	0.1700	2045	Yes	Yes	12, 8	Regular
Town of Mt Gilead	03-62-015	0.1060	365	0.2000	2045	Yes	Yes	24,20	Regular
Town of Robbins	03-63-015	0.1940	365	0.2500	2019	Yes	Yes	10	Regular
Town of Star	03-62-025	0.0640	365	0.1130	2045	Yes	Yes	8, 12	Regular
Town of Troy	03-62-020	0.4170	365	0.6000	2045	Yes	Yes	20,16	Regular
Wood Run	03-62-107	0.0640	365	0.0500	2040	Yes	Yes	12	Regular

The towns of Candor, Star, Biscoe, Troy and Mount Gilead all renewed contracts in 2005 for 40 years. They are not to exceed 60 MG per month.

The contract value of 0.9 MGD is the amount of water Biscoe would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.17 MGD is the amount of water Candor would need to purchase in order to keep their projected demand below or around 80% of supply.


The contract value of 0.113 MGD is the amount of water Star would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.6 MGD is the amount of water Troy would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.2 MGD is the amount of water Mount Gilead would need to purchase in order to keep their projected demand below or around 80% of supply.

3. Water Supply Sources

Monthly Withdrawals & Purchases

	Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)
Jan	2.5600	3.0360	May	2.4860	3.2410	Sep	2.8430	3.2000
Feb	2.5700	3.7550	Jun	2.5720	2.7890	Oct	2.6310	3.2220
Mar	2.2780	2.6040	Jul	2.7760	3.1520	Nov	2.3710	2.8270
Apr	2.3810	2.6240	Aug	2.9960	3.6490	Dec	2.4120	2.9010

Montgomery Co's 2017 Monthly Withdrawals & Purchases

Surface Water Sources

Pee Dee River	Lake Tillery	2.5700	365	3.7550	6.0000	С	774.0000
	MGD	Days Used	Withdrawar (WGD)	MGD	* Qualifier	Storage (MG)	
Stream Reservoir		Average D	aily Withdrawal	Maximum Day Withdrawal (MGD)		able Raw er Supply	Usable On-Stream Raw Water Supply

^{*} Qualifier: C=Contract Amount, SY20=20-year Safe Yield, SY50=50-year Safe Yield, F=20% of 7Q10 or other instream flow requirement, CUA=Capacity Use Area Permit

Surface Water Sources (continued)

Pee Dee River	Lake Tillery	4,600	Yes	Yadkin River (18-1)	Montgomery		Regular
Stream	Reservoir	Drainage Area (sq mi)	Metered?	Sub-Basin	County	Year Offline	Use Type

What is this system's off-stream raw water supply storage capacity? 0 Million gallons

Are surface water sources monitored? Yes, Daily

Are you required to maintain minimum flows downstream of its intake or dam? $\,$ No $\,$

Does this system anticipate transferring surface water between river basins? Yes

IBT:

Sale of water to the Town of Robbins - Deep River Basin (02-2)

Sale of water to customers in the Lumber River Basin (09-1)

Water Purchases From Other Systems

Seller PWSID		Average	Days	Contract			Required to	Pipe Size(s)	Use
Sellel		Used	MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Type	
Town of Troy	03-62-020	0.0000	0	0.0000	2045	Yes	Yes	8, 12	Emergency

Town of Troy is buy back scenario.

Water Treatment Plants

Plant Name
Permitted Capacity (MGD)
Is Raw Water Metered? Is Finished Water Ouput Metered? Source

Montgomery County WTP
6.0000
Yes
Yes
Lake Tillery

Did average daily water production exceed 80% of approved plant capacity for five consecutive days during 2017? No

If yes, was any water conservation implemented?

Did average daily water production exceed 90% of approved plant capacity for five consecutive days during 2017? No

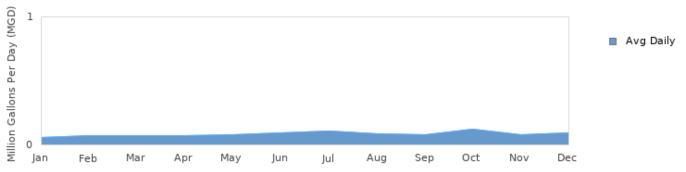
If yes, was any water conservation implemented?

Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? No

4. Wastewater Information


Monthly Discharges

Average Daily
Discharge (MGD)


Average Daily
Discharge (MGD)

Discharge (MGD)

Discharge (MGD)

Montgomery Co's 2017 Monthly Discharges

How many sewer connections does this system have? 158

How many water service connections with septic systems does this system have? 4,258

Are there plans to build or expand wastewater treatment facilities in the next 10 years? No

Wastewater discharge is related to NPDES permit No. 0080322 for alum sludge treatment facility. Sewer connections are MCPU collections systems that send wastewater to local municipalities at their WWTPs.

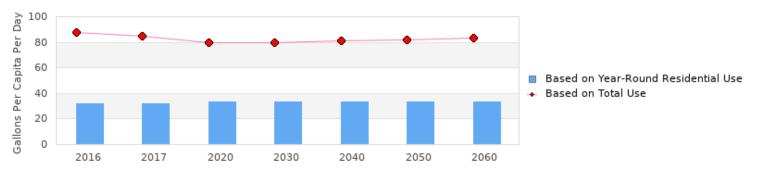
				_		
1/1/2	010	214/5	ato.	rО	erm	ite

Permit Number	Permitted Capacity (MGD)	Design Capacity (MGD)	Average Annual Daily Discharge (MGD)	Maximum Day Discharge (MGD)	Receiving Stream	Receiving Basin	
NC0080322	0.2880	0.3800	0.0628		Unamed Trib. to Clarks Creek	Yadkin River (18- 1)	
Wastewater Inter	connections						
		PWSID	Tura	Average D	Average Daily Amount		
water Syst	Water System		Type	MGD	Days Used	Maximum (MGD)	
Town of Candor		03-62-030	Discharging	0.0150	365	0.0000	
Town of Troy		03-62-020	Discharging	0.0032	365	0.0000	

5. Planning

Projections

	2017	2020	2030	2040	2050	2060
Year-Round Population	14,473	14,900	15,870	16,900	18,000	19,170
Seasonal Population	0	0	0	0	0	0
Residential	0.4660	0.4970	0.5290	0.5630	0.6000	0.6390
Commercial	0.2820	0.3090	0.3400	0.3740	0.4110	0.4520
Industrial	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Institutional	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
System Process	0.0250	0.0400	0.0420	0.0440	0.0460	0.0480
Unaccounted-for	0.4630	0.3390	0.3650	0.3930	0.4240	0.4560


Residential: projections based on 6.5% growth every 10 years - more aggressive than the NC Department of Commerce's 3% / 10 years for Montgomery County;

Commercial: projections based on 10% growth / 10 years - again an aggressive rate to stress this planning exercise

Future Water Sales

Purchaser	PWSID		Contract		Pipe Size(s)	(Inches)	Use Type
		MGD	Year Begin	Year End			
Robbins Water System	03-63-015	0.5000	2020				Regular
Demand v/s Percent of Supply	у						
		2017	2020	2030	2040	2050	2060
Surface Water Supply		6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Ground Water Supply		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Purchases		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Future Supplies			0.0000	0.0000	0.0000	0.0000	0.0000
Total Available Supply (MGD)		6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Service Area Demand		1.2360	1.1850	1.2760	1.3740	1.4810	1.5950
Sales		1.3340	2.3470	2.3470	2.3470	2.3470	2.3470
Future Sales			0.5000	0.5000	0.5000	0.5000	0.5000
Total Demand (MGD)		2.5700	4.0320	4.1230	4.2210	4.3280	4.4420
Demand as Percent of Supply		43%	67%	69%	70%	72%	74%

Montgomery Co's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

Your long-term water demand is 32 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here. See Section 1 of the plan for practices that could reduce the per capita water demand.

Are there other demand management practices you will implement to reduce your future supply needs?

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs?

How does the water system intend to implement the demand management and supply planning components above?

Additional Information

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning?

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues:

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

4.g

Montgomery County Daily Water Production Summary

2017 Montgomery County Water Daily Production

*Amount expressed in MGD (Million Gallons/Day)

Amount expressed in mos (immor danons, buy)	Month											
Day	January	February	March	April	May	June	July	August	September	October	November	December
1	2.049	2.673	2.364	2.266	2.506	2.114	2.817	2.938	2.576	2.749	2.500	2.603
2	2.664	2.676	2.047	2.472	2.505	2.739	2.817	3.105	3.060	2.536	2.881	2.586
3	2.632	3.444	2.486	2.618	2.453	2.810	2.543	3.176	3.125	3.209	2.552	2.490
4	2.712	3.860	2.373	2.299	2.391	2.291	2.727	3.276	2.815	3.182	2.637	2.400
5	2.304	2.753	2.148	2.225	2.498	2.394	2.578	2.749	2.879	3.236	2.451	2.404
6	2.665	2.450	2.431	2.279	2.481	2.694	2.818	2.670	2.700	2.850	2.402	2.583
7	2.123	2.569	2.232	2.274	2.124	2.373	2.482	3.147	2.838	2.959	2.775	2.572
8	2.732	2.677	2.579	2.052	2.317	2.365	2.764	2.845	2.600	2.438	2.649	2.646
9	2.233	2.690	2.351	2.370	2.598	2.667	2.462	3.110	3.180	2.853	2.534	2.634
10	2.651	2.553	2.351	2.144	2.823	2.790	2.741	3.060	2.594	2.894	2.263	2.691
11	2.810	2.773	2.070	2.578	3.030	2.801	2.593	2.884	2.424	2.698	2.649	2.198
12	2.832	2.349	2.215	2.521	3.120	2.846	2.733	3.504	2.403	2.832	2.370	2.586
13	2.886	2.482	2.087	2.236	2.307	2.321	2.734	3.745	2.831	2.906	2.582	2.670
14	2.914	2.642	2.620	2.605	2.004	2.739	2.799	2.751	2.527	2.794	2.398	2.515
15	3.135	2.680	2.051	2.699	2.685	2.751	3.060	3.179	2.581	2.723	2.202	2.711
16	2.627	2.764	2.402	2.401	2.357	2.741	3.240	3.336	2.761	2.597	2.668	2.682
17	2.660	2.762	1.923	2.492	3.203	2.837	2.874	3.544	2.394	2.649	2.643	2.691
18	2.549	2.349	2.345	2.604	3.323	2.273	3.179	3.522	3.147	3.270	2.476	2.702
19	2.727	2.431	2.388	2.637	2.474	2.827	3.293	3.243	3.220	2.168	2.409	2.718
20	2.599	2.216	2.068	2.318	2.413	2.857	2.992	2.363	2.961	2.697	2.397	2.705
21	2.613	2.326	2.554	2.357	2.406	2.217	3.178	3.457	3.136	2.936	2.569	2.705
22	2.315	2.601	2.558	2.679	2.200	2.765	2.798	3.133	3.032	2.613	2.607	2.686
23	2.473	2.358	2.278	2.578	2.440	2.330	3.174	3.263	3.118	2.228	2.407	2.629
24	2.663	2.385	2.462	2.638	2.425	2.859	2.902	2.567	2.519	2.968	2.473	2.657
25	2.658	2.732	2.595	2.647	2.727	2.808	2.884	3.063	2.709	2.526	2.409	2.234
26	2.688	2.344	2.293	2.603	2.524	2.812	3.103	2.793	3.112	2.588	2.382	2.127
27	2.733	2.430	2.215	2.327	2.560	2.750	3.191	3.082	2.439	2.648	2.293	2.646
28	2.739	2.426	2.465	2.667	2.466	2.691	3.126	3.027	3.096	2.494	2.670	2.664
29	2.244		2.427	2.411	2.342	2.722	3.118	2.562	2.699	2.591	2.514	2.396
30	2.679		2.291	2.275	2.820	2.727	2.872	3.064	2.921	2.347	2.377	2.695
31	2.660		2.510		2.739		3.241	3.187		2.763		2.295
Monthly Total MGD (Millon Gallons/Day)	80.969	73.395	72.179	73.272	79.261	78.911	89.833	95.345	84.397	84.941	75.139	79.521
Monthly ADF (MGD)	2.612	2.621	2.328	2.442	2.557	2.630	2.898	3.076	2.813	2.740	2.505	2.565
Max Day in Month (MGD)	3.135	3.860	2.620	2.699	3.323	2.859	3.293	3.745	3.220	3.270	2.881	2.718
Min Day in Month (MGD)	2.049	2.216	1.923	2.052	2.004	2.114	2.462	2.363	2.394	2.168	2.202	2.127

Annual MDF 3.533

Total Annual MGD (MGD)	967.163
Average Daily (MGD)	2.649
Maximum Daily (MGD)	3.860
Minimum Daily (MGD)	1.923
Peaking Factor (MGD)	1.457

Columns highlighted in BLUE for 2017 (Nov, Dec) are 2016 data as it was a rolling 12 month period Cells highlighted in YELLOW were highest 2 day average.

2018 Montgomery County Water Daily Production

Records provided by Montgomery County

*Amount expressed in MGD (Million Gallons/Day)

	Month											
Day	January	February	March	April	May	June	July	August	September	October	November	December
1	2.580	2.475	2.574	2.180	2.742	2.753	3.125	3.146	3.164	2.749	3.163	2.638
2	2.665	2.567	3.028	3.190	3.094	3.234	3.158	2.626	3.195	2.536	2.632	2.437
3	2.787	2.664	2.690	3.210	2.806	2.332	3.601	2.624	2.379	3.209	2.849	2.394
4	3.114	2.289	2.256	3.058	2.690	2.795	3.047	2.510	3.123	3.182	2.589	2.627
5	2.601	2.307	2.875	2.791	2.660	2.724	3.092	2.649	3.110	3.236	2.141	2.415
6	3.076	2.859	2.881	2.877	2.546	2.940	3.635	2.975	3.080	2.850	2.481	2.589
7	3.110	2.535	2.751	2.195	2.735	2.926	2.696	2.744	3.077	2.959	2.863	2.221
8	3.093	2.565	2.855	2.838	2.582	3.165	2.727	2.643	3.136	2.438	2.781	2.231
9	3.186	2.489	2.256	2.699	2.487	2.852	3.117	3.120	2.556	2.853	2.312	2.153
10	3.348	1.994	2.999	2.812	2.791	2.926	2.892	2.797	3.183	2.894	2.583	2.431
11	3.469	2.574	2.473	2.656	2.795	2.877	2.921	2.918	2.838	2.698	2.356	2.140
12	3.512	2.282	2.694	2.722	3.120	2.992	3.078	3.021	3.158	2.832	2.497	2.764
13	3.531	3.024	2.471	2.829	2.757	2.739	2.773	2.655	3.184	2.906	3.103	2.353
14	3.178	2.997	2.952	2.902	2.793	3.211	3.096	3.303	2.684	2.794	3.130	2.380
15	2.958	2.884	2.907	2.558	3.126	2.685	2.600	3.641	2.921	2.723	2.878	2.395
16	2.649	2.974	2.534	2.759	3.042	2.914	2.961	2.915	2.921	2.597	3.099	2.497
17	3.454	3.160	2.258	2.478	2.546	3.111	3.140	3.051	3.087	2.649	3.111	1.613
18	2.832	3.202	2.808	2.591	2.817	2.757	3.061	3.062	3.079	3.270	2.313	2.644
19	3.056	3.203	2.656	2.297	2.408	3.141	3.058	2.485	3.407	2.168	2.489	2.620
20	3.099	3.284	2.340	2.847	1.960	3.172	3.125	3.303	3.607	2.697	2.330	2.427
21	3.051	2.673	2.867	2.163	2.946	3.489	2.711	2.667	3.674	2.936	2.330	2.576
22	3.145	3.193	2.514	2.636	2.935	3.367	3.053	3.367	2.067	2.613	2.424	2.578
23	3.194	3.220	2.389	2.454	2.869	3.448	2.434	2.871	3.777	2.228	2.708	2.688
24	2.979	3.262	2.393	2.468	2.662	2.987	2.965	3.130	3.723	2.968	2.364	2.376
25	3.354	3.333	2.775	2.309	2.317	3.074	2.282	2.772	3.799	2.526	2.384	1.970
26	2.832	3.248	2.628	2.441	2.494	3.078	3.075	2.765	3.570	2.588	2.257	2.550
27	3.222	3.258	2.791	2.372	2.203	2.816	2.866	2.739	3.169	2.648	2.509	1.920
28	2.655	2.977	2.395	2.265	2.819	2.563	3.016	2.931	3.042	2.494	2.592	2.508
29	2.714		2.672	2.160	2.616	3.158	2.568	2.945	2.796	2.591	2.529	2.475
30	2.592		2.214	2.492	2.771	3.092	2.613	3.219	2.957	2.347	2.646	2.486
31	2.910		2.781		2.544		2.569	3.186		2.763		2.137
Monthly Total MGD (Millon Gallons/Day)	93.946	79.492	81.677	78.249	83.673	89.318	91.055	90.780	93.463	84.941	78.443	74.233
Monthly ADF (MGD)	3.031	2.839	2.635	2.608	2.699	2.977	2.937	2.928	3.115	2.740	2.615	2.395
Max Day in Month (MGD)	3.531	3.333	3.028	3.210	3.126	3.489	3.635	3.641	3.799	3.270	3.163	2.764
Min Day in Month (MGD)	2.580	1.994	2.214	2.160	1.960	2.332	2.282	2.485	2.067	2.168	2.141	1.613
		_						Annual MDF	3.761			

Total Annual MGD (MGD)	1019.270
Average Daily (MGD)	2.793
Maximum Daily (MGD)	3.799
Minimum Daily (MGD)	1.613
Peaking Factor (MGD)	1.360

Columns highlighted in BLUE for 2018 (Oct, Nov, Dec) are 2017 data as it was a rolling 12 month period when data pulled for state inspection in October Cells highlighted in YELLOW were highest 2 day average.

APPENDIX 5

MONTGOMERY COUNTY, NORTH CAROLINA 2018 DWSRF RAW WATER PUMP STATION IMPROVEMENTS PROJECT

APPENDIX 5A

NEPA CATEGORICAL EXCLUSION NARRATIVE

NEPA CATEGORICAL EXCLUSION ENVIRONMENTAL DOCUMENTATION

PREPARED FOR

DRINKING WATER STATE REVOLVING FUND

RAW WATER PUMP STATION IMPROVEMENTS

MONTGOMERY COUNTY, NORTH CAROLINA

TWC PROJECT No: 3288-K

DWI PROJECT NOS.: H-SRP-D-18-0161 AND WIF1951

Prepared by:

5.0 Environmental Information Document

5.1 PROJECT AREA

Montgomery County is located in the piedmont of North Carolina, with the major transportation corridors being N.C. Rte 731 and the Aberdeen Carolina & Western Railway (ACWR). The County provides drinking water to six (6) local municipalities as their sole source for drinking water. The County's 2017 Asset Management Plan (AMP) required analysis of inventory and condition of system assets to prioritize capital improvement projects. One of the projects identified as critical is the replacement of pumps at the Raw Water Pump Station (RWPS), which was constructed in 1982. The Montgomery County¹ RWPS is situated on the banks of the Pee Dee River on Nash Road, approximately three (3) miles west of the Town of Mt. Gilead, north of the Lake Tillery Dam (also known as Norwood Dam). Water processed at this pump station is transferred to the Water Treatment Plant (WTP) located at 724 Hydro Road. The RWPS is located within the easement corridor along the Pee Dee River, owned by the Duke Energy.

As included in the funding application and depicted on the **Project Vicinity & Location Map (Appendix 5B)**, the \$1.5M project consists of the replacement of two raw water pumps, motors, controls, valves, appurtenances, a generator, the existing SCADA system, and other general site improvements. Project alternatives, as discussed in more detail in the engineering portion of this report, are as follows:

- 1. No action;
- 2. Replacement of the two (2) existing 6-MGD pumps with two (2) 6-MGD pumps;
- 3. Replacement of the two (2) existing 6-MGD pumps with two (2) 4-MGD pumps; or
- 4. Replacement of the two (2) existing 6-MGD pumps with two (2) 6-MGD pumps, along with installation of Variable Frequency Drives (VFDs).

The general site improvements, which are common to the *action* alternatives, include:

- Installation of a sodium permanganate system to improve water treatment;
- Improved access to the lower level of the station by means of expanding the length of the access hatch;
- Landscaping improvements around the site for bank stabilization and erosion control consisting of approximately 2,000 sf of 1:2 banks;
- Sump pump improvements;

¹ Montgomery County, NC. Public Utilities. http://www.montgomerycountync.com/departments/public-utilities/operations

- Relocation of master control center (MCC), the electrical interface for the pumps, to inside the station if possible; and
- Installation of weather heads, conduit repair, and relocation of radio tower to improve SCADA signal.

The majority of work planned is inside the existing building: replacement of the raw water pumps, motors, controls, valves and appurtenances, sump pump improvements, sodium permanganate system installation and access improvements. External improvements include: replacement of the existing generator, relocation of the motor control center, various electrical improvements, and site improvements to address erosion issues.

Alternatives of ground disturbance & construction:

- With the no action alternative, the RWPS would remain in its current deficient state. Older and
 deteriorated components increase the probability of station failure, which would create adverse
 environmental and health conditions, including lack of drinking water.
- **Rehabilitation** of components is generally a less expensive and viable alternative if existing structural and equipment components and appurtenances are of an age and condition that could support efficient and effective design, and continued facility operations & maintenance. However, in some cases, such as this project, rehabilitation of the equipment is not feasible or practical.
- Replacement/New construction of equipment/components within the previously disturbed areas of the existing site is the preferred action. Consideration of either downsizing pumps to 4-MGD or incorporating VFDs are included in alternatives. Either of these downsizing alternatives can increase operational efficiency and energy savings, but VFDs are more expensive. The preferred alternative between these two downsizing choices will be determined upon further investigation and analysis of future data trends of population, demand, flow, etc. The County prefers to be proactive in maintaining optimal facility performance, but does not have the financial resources available needed to undertake a sizeable project without outside funding assistance.

Ground disturbance is estimated to be minimal. However for planning purposes, the total project area is proposed in previously disturbed and developed areas within the RWPS site (up to approximately 1 acre). Final location(s) of new impervious surface(s) are to be determined upon further surveying investigation / engineering design. Equipment rehabilitation/replacement will either involve no ground disturbance, or stay within the existing footprint of existing impervious surface. Wetland delineations and buffers will be

implemented as appropriate. Maps are included in Appendix 5B. Environmental source documentation is included in Appendix 5C. Agency Consultations are included in Appendix 5D. The Drinking Water State Revolving Fund (DWSRF) "Request for Categorically Exclusion" form is included in 5E.

5.2 TOPOGRAPHY AND FLOODPLAINS

Topography is generally grassy, surrounded by shrubs/trees, developed areas, with 8-45% slopes. Existing ground cover is grass/gravel/asphalt². The project area has steep slopes that convey stormwater to flow into the adjacent Pee Dee River and Lake Tillery Reservoir, which flows through South Carolina before eventually discharging in the Atlantic Ocean. The project area is located within the FIRM map 3710658300K, effective 09/03/08^{3,4,5}. The FIRM map indicates that the existing pump station site has a slight amount of acreage within 100-year floodplain, which is logical, considering its dependence upon access to the Pee Dee River. The proposed rehabilitation and replacement project activities take place amongst existing structures and developed surface. No new structures are proposed within floodplain/floodway/wetland areas. Soils may be temporarily disturbed during construction. With the exception of the bank restoration, soils will be returned to original conditions after construction is complete.

With typical sedimentation & erosion control best management practices⁶, and compliance with the County's flood damage prevention ordinance⁷, it is anticipated that the proposed project will not cause any change in the floodplain elevation, as well as preventing adverse downstream sedimentation impacts. In addition, landscape work for bank stabilization will hinder further erosion. Additional topographic and floodplain data is included in **Appendix C**.

5.3 SOILS AND PRIME OR UNIQUE FARMLAND

Prime farmland is best suited to producing food and fiber, with the soil quality, growing season, and moisture supply needed to economically produce sustainable high crop yields. State and locally important farmland are capable of producing crops economically if modern farming methods, including

⁷ Montgomery County, NC. Code of Ordinances. https://library.municode.com/nc/montgomery_county/codes/code_of_ordinances

Montgomery County Raw Water Pump Station Improvements December 2018

² United States Department of Agriculture (USDA). Natural Resource Conservation Service (NRCS). Web Soil Survey. <u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>

³ Federal Emergency Management Agency (FEMA). Map Service Center. https://msc.fema.gov/portal

⁴ NC Floodplain Mapping Program. http://www.ncfloodmaps.com/

⁵ United States Environmental Protection Agency (US EPA). NEPAssist Mapping Tool. https://www.epa.gov/nepa/nepassist

⁶ North Carolina Division of Environmental Quality (NC DEQ). Division of Energy, Mineral, and Land Resources. *Erosion and Sedimentation Control*. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/erosion-sediment-control

water management, are used. The existing soil types and farmland classifications within the project area property are in the table below^{8, 9, 10}:

Symbol	Description	Farmland Class	Acres	% of
				Project
				Area
GoE	Goldston-Badin complex, 15-45% slope	Not Prime Farmland	1.0	77
BeC2	Badin-Tarrus complex, 8-15% slopes, moderately eroded	Farmland of Statewide Importance	0.3	23
		Total	1.3	100%

All project activities will take place inside built-up areas within the boundaries of the existing, previously disturbed, station site. Since ground disturbance is estimated to be less than 1 acre and within the fenced perimeter of the RWPS site, it is unlikely that a Sediment and Erosion Control (SEC) permit from the NC DEQ NC Division of Land Quality (DLQ) 11 would be needed. DLQ will identify the best management practices to minimize erosion and off-site sedimentation, as needed. Any excavated soils will be used as backfill for replacement construction activities. All non-paved and disturbed areas will be graded, seeded, and mulched to re-establish vegetation immediately following construction. No soil contamination is known to be present, and no soils are anticipated to be contaminated during or after project completion. The project does not provide the opportunity to disturb or develop prime or unique farmland, rangeland, or forestland. Detailed soil data is included in **Appendix C**.

5.4 LAND USE & ZONING

The RWPS is on developed, built-up property with maintained grassy lawn/gravel/asphalt, surrounded by undeveloped woods, adjacent to the Pee Dee River¹². The station is zoned as residential, with easement permissions from Duke Power to operate the station and access the Pee Dee River¹³. Project activities on this pre-existing lot will not change zoning or land use designations. Mitigation for land use and zoning is not necessary, as the intent of the project is rehabilitation and replacement of existing station features and equipment. Tax parcel data is included in **Appendix C**.

Montgomery County Raw Water Pump Station Improvements

December 2018

⁸ USDA. Official Soil Series Descriptions (OSDs). https://soilseries.sc.egov.usda.gov/osdname.aspx

⁹ US EPA. NEPAssist Mapping Tool. https://www.epa.gov/nepa/nepassist

¹⁰ USDA. NRCS. Web Soil Survey. https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

¹¹ NC DEQ. Division of Energy, Mineral, and Land Resources. Erosion and Sedimentation Control. https://deq.nc.gov/about/divisions/energy-mineral-land-resources/erosion-sediment-control

¹² US EPA. NEPAssist Mapping Tool. https://www.epa.gov/nepa/nepassist

Montgomery County, NC. Planning Department. GIS Website. https://www.webgis.net/nc/montgomery/

5.5 Forest Resources

There are some assorted forest resources in the project vicinity: the urban forests are surrounded by conserving working forestlands. Typical sedimentation and erosion control best management practices will be incorporated as applicable to minimize erosion and off-site sedimentation to sensitive habitat areas. Forestland data is included in **Appendix C**.

5.6 WETLANDS AND STREAMS

Wetlands serve primarily as a flood control area for the surrounding lands as well as providing a natural habitat for wildlife. According to the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI), nationally-classified wetlands are adjacent to the site, and not within the potential ground disturbance corridor. Several wetlands are within 1 mile. Lake Tillery is classified as deepwater habitat L1UBHh (Lacustrine, Limnetic, Unconsolidated Bottom, Permanently Flooded, Diked/Impounded)^{14,15}. While the project ground disturbance activity is proposed in non-wetland areas of the property, wetland delineations may be needed upon further surveying/ design, and minimum buffer requirements will be followed as applicable. Impacts may include increased suspended solids and nutrients in stormwater runoff resulting from soil disturbance during construction activities. This impact would be temporary and isolated/cleaned up to minimize negative impacts to aquatic flora and fauna. Additional detailed wetland data is included in **Appendix C**.

5.7 WATER RESOURCES, WILD & SCENIC RIVERS

The County provides finished drinking water to six (6) local municipalities as their sole source for drinking water. Montgomery County has a buyback scenario with the Town of Troy for emergency uses¹⁶. The County's existing distribution system includes approx. 400 miles of linework, storage tanks, pumping stations, and a water treatment plant.

The project is located in the Yadkin Pee Dee River Basin, Lake Tillery Subwatershed, (HUC Code 030401040203)^{17,18}. Site surface water generally flows across gravel, impervious surfaces, and vegetation in a SW direction to Lake Tillery / Pee Dee River, which travels through South Carolina before discharging into the Winyah Bay and eventually the Atlantic Ocean. The area generally surrounding Lake

¹⁸ NC DEQ DWR. *Yadkin Pee Dee* 2008. https://deq.nc.gov/about/divisions/water-resources/planning/basin-planning/water-resource-plans/yadkin-pee-dee-2008

Montgomery County Raw Water Pump Station Improvements December 2018

¹⁴ USFWS. National Wetland Inventory (NWI). Wetlands Mapper. https://www.fws.gov/wetlands/data/mapper.html

¹⁵ USFWS. NWI. Wetland Classification Codes. http://www.fws.gov/wetlands/data/wetland-codes.html

¹⁶ NC Department of Environmental Quality (DEQ) Division of Water Resources (DWR). Local Water Supply Plans. *Montgomery County* 2017, http://www.ncwater.org/Water-Supply-Planning/Local-Water-Supply-Plan/search.php

¹⁷ NC DEQ DWR. Basin Planning Branch. https://deq.nc.gov/about/divisions/water-resources/planning/basin-planning

Tillery Dam is gameland, but not home to any trout fishing waters¹⁹. There are no Wild or Scenic Rivers²⁰ within one mile.

According to the North Carolina Division of Water Quality's Integrated Reports^{21,22}, Lake Tillery meets all surface water criteria except for fish consumption, and is therefore, classified as impaired (Category 5) on DEQ's 2014 303(d) list and 2016 303(d) list. The Pee Dee River south of the dam is not impaired, but needs additional data for iron levels. The table below outlines these surface waters descriptions and parameters^{23,24}.

Name	Index #	Desc. Loc.	Class. Desc.	Overall Cat.	Parameter Cat.
Pee De River (including Lake Tillery below normal operating levels)	ID # 13-(1) [on 2016 303(d) list]	From mouth of Uwharrie River to Norwood Dam	WS-IV: Highly developed water supply B: Primary recreation, fresh water CA: Critical Areas	1-Meeting Criteria; 5- Exceeding Criteria (impaired)	1- Meeting Criteria for all parameters of interest except 5- Exceeding Criteria for PCB Fish tissue mercury (Advisory, FC, NC) - Consumption Advisory
Pee De River (from Norwood Dam to Rocky River)	ID # 13- (15.5)a	From Norwood Dam, south towards mouth of Turkey Top Creek	WS-V; Water supply upstream B: Primary recreation, fresh water	1-Meeting Criteria;	1-Meeting Criteria for all parameters of interest except Fish Tissue Mercury (Nar, FC, NC); 3z1- data inconclusive for Iron

Landscaping improvements are proposed around the site for bank stabilization and erosion control. Minimal new impervious surface is planned in non-wetland areas of the RWPS site. Temporary, negative direct impacts to surface waters may result from sedimentation of disturbed soils during construction and runoff of pollutants from construction machinery. It is possible that a permit will be required from U.S.

15

Montgomery County

¹⁹ NC Wildlife Resources Commission (WRC). *Trout Fishing Maps*. http://www.ncwildlife.org/Fishing/Trout-Fishing-Maps.

²⁰ National Wild & Scenic Rivers System. North Carolina. http://www.rivers.gov/north-carolina.php

²¹ NC DEQ DWR. Water Resources Data, Statistics, and Maps. <a href="https://deq.nc.gov/about/divisions/water-resources/water

²² NC DEQ DWR. *Classifications*. "DWR Surface Water Classifications". http://deq.nc.gov/about/divisions/water-resources/planning/classification-standards/classifications

²³ NC DEQ DWR. Water Resources Data, Statistics and Maps. <a href="https://deq.nc.gov/about/divisions/water-resources/water-resources/water-resources/water-resources/water-resources/water-resources/water-resources/science-data DEQ GIS Online. 2014 Integrated Report. 2016 Integrated Report.

²⁴ NC DEQ DWR. *Classifications*. http://deq.nc.gov/about/divisions/water-resources/planning/classification-standards/classifications

Army Corps of Engineers (USACE) to undertake construction. Best management practices implemented for sedimentation and stormwater control will reduce erosion and nutrient loading. Project activities should have positive impact on groundwater quality and surface water quality. Water resource data is included in **Appendix C**.

5.8 COASTAL RESOURCES

The project takes place in Montgomery County, which is not a coastal county, and does not contain any coastal barrier resources²⁵. Therefore, a federal consistency review in regards to the Coastal Zone Management Act / Coastal Area Management Act (CAMA) / Coastal Barrier Resource System (CBRS) is not required with NC Division of Coastal Management (DCM)²⁶.

5.9 BIOLOGICAL RESOURCES

There are no known shellfish or fishing areas beds within the project area. There are no known closed beds, productive or spawning areas within or adjacent to the project area. While there are federally listed endangered and threatened species in Montgomery County^{27,28}, according to U.S. Fish and Wildlife Service (USFWS) and NC Natural Heritage Program (NHP) data^{29,30}, most of the species of concern indicated in the project's immediate vicinity depend on aquatic/wetland habitat^{31,32,33,34}. The existence of rare and endangered plant and animal species was evaluated within an approx. 2-mile radius from the project and by topographic quad. Other typical wildlife associated within and adjacent to the proposed project area includes deer, small game, and waterfowl. A review of species profiles and custom USFWS report indicate no critical habitats for subject species. In addition, while wetlands might be near project ground disturbance and may have potential habitat for listed threatened and endangered species in the vicinity, all construction activities will generally be confined to areas within the previously disturbed and developed pump station site.

³⁴ NC DEQ NHP. *Definitions of Status Codes and Terms*. http://www.ncnhp.org/references/definition-of-status-codes-and-terms.

²⁵ USFWS. Coastal Barrier Resources System. North Carolina. http://www.fws.gov/ecological-services/habitat-conservation/cbra/maps/Locator/NC.html

²⁶ NC DEQ DCM. *Federal Consistency*. https://deq.nc.gov/about/divisions/coastal-management/coastal-management-permits/federal-consistency;

https://files.nc.gov/ncdeq/Coastal%20Management/documents/PDF/Guidance%20subpart%20C%20fact%20sheet.pdf

²⁷ USFWS. Endangered and Threatened Species and Species of Concern by County for North Carolina. http://www.fws.gov/raleigh/species/cntylist/nc_counties.html

²⁸ USFWS. IPaC Report. https://ecos.fws.gov/ipac/

²⁹ NC DEQ NHP. Species/Community Search. http://www.ncnhp.org/web/nhp/database-search

³⁰ NC DEQ NHP Mapper. http://ncnhde.natureserve.org/content/map

³¹ USFWS. ECOS, Species Profile. https://ecos.fws.gov/ecp/

³² USFWS. Raleigh Ecological Services Field Office. *Endangered and Threatened Species of North Carolina*. https://www.fws.gov/raleigh/es_tes.html

³³ USFWS. Endangered Species. Find Endangered Species. https://www.fws.gov/endangered/

The proposed bank landscaping improvements can also help restore habitat downstream. Sedimentation and erosion from earth disturbing activities into local surface waters have potential to negatively affect fish, shellfish and their habitats. Soil particles cover spawning areas and smother fish eggs, aquatic insects, and oxygen producing plants. Increased turbidity levels increase water temperatures, reduce light penetration and plant growth, and affect the ability of fish to locate and capture prey by greatly reducing visibility. Fish can die from the abrasive, gill clogging effects of suspended sediment, which interferes with their breathing. Construction equipment and associated noise may temporarily divert wildlife from typical movement patterns during daylight hours. Therefore, construction equipment will have mufflers to minimize noise impacts. Mitigative measures proposed to avoid direct impacts include the provision and proper maintenance of sedimentation and erosion control measures (such as silt fence, rock check dams, erosion control matting, sediment traps, and buffers) during construction and afterwards until a sufficient vegetation is present to prevent soil runoff. There are no expected adverse environmental impacts expected regarding threatened or endangered species, critical habitats, wildlife & natural vegetation, shellfish or fish, or biological resources. Agencies will be consulted for concurrence of anticipated no adverse impact. The USFWS County listing³⁵ for all federal and state recognized threatened and endangered species is in Appendix C, as well as the USFWS Information for Planning & Consultation (IPaC) Report³⁶, Natural Heritage Program data, and highlighted species profiles.

5.10 Public Lands and Scenic, Recreational, and State Natural Areas

In conjunction with a review of species of importance, the NHP also compiles a list of "natural heritage areas" based on the presence of rare plant and animal species, rare or high quality natural communities, and special animal habitats³⁷. The natural areas are ranked based on the quality and value of elements present. The existence of designated natural areas was evaluated within an approx. 2-mile radius from the project area^{38,39} and species element occurrences by topographic quad. The closest Natural Area (very high rating) is on the Pee Dee River, south of the Lake Tillery Dam. The closest conservation easement is southwest of the Lake Tillery Dam. There are no nearby national or state parks within 2 miles. The Uwharrie National Forest is a few miles north of Mt Gilead and touches the Pee Dee River and Badin Lake^{40,41}. The project activities will not increase or decrease access or traffic to these parks, natural areas,

. -

17

³⁵ USFWS. Endangered and Threatened Species and Species of Concern by County for North Carolina. http://www.fws.gov/raleigh/species/cntylist/nc_counties.html

³⁶ USFWS. IPaC Report. https://ecos.fws.gov/ipac/

³⁷ NC DEQ NHP. Species/Community Search. http://www.ncnhp.org/web/nhp/database-search

³⁸ NC DEQ NHP. Definitions of Status Codes and Terms. http://www.ncnhp.org/references/definition-of-status-codes-and-terms

³⁹ NC DEQ NHP Mapper. http://ncnhde.natureserve.org/content/map

⁴⁰ US National Park Service. Park Listing. North Carolina. http://www.nps.gov/state/nc

and recreational facilities and opportunities. Project construction is not expected to have any adverse environmental impact to formally classified lands, natural areas, or recreational areas. More detailed NHP data is included in **Appendix C**.

5.11 AREAS OF ARCHAEOLOGICAL OR HISTORICAL VALUE

According to NC State Historic Preservation Office (SHPO) data, there are historic elements listed for Montgomery County under the National Register of Historic Places, with the closet being in Mt Gilead⁴². Within 1 mile from the site are two points that were surveyed and/or determined to be eligible as historic. These points of interest are related to the dam crossing and railroad crossing across the Pee Dee River. There are no other known historic properties or visually sensitive zones within 1 mile or adjacent to the proposed project area. The proposed project activities are not expected to have any adverse impact on aesthetic quality of the area. The project will not impact routine operations or access to any historic places. Montgomery County is not a location of interest to the Eastern Band of Cherokee Indians, Tuscarora Nation of New York, or Muscogee (Creek) Indian Nation. Federally-funded activities involving *new* ground disturbance across North Carolina are an interest to the Catawba Indian Nation^{43,44}. Nonetheless, should any Native American artifacts/remains be located during the ground disturbance phase of project, the Catawba Nation will be contacted. In addition, the NC SHPO will be consulted for concurrence of no adverse impact to cultural and historic resources. NC SHPO data is included in **Appendix C**⁴⁵.

5.12 AIR QUALITY

The State is divided into air quality regions to implement the established ambient quality standards^{46,47,48}. Montgomery County is not located in a designated area for ozone, particulates, carbon monoxide, or sulfur dioxide for National Ambient Air Quality Standard (NAAQS)^{49,50}. The proposed project activities

⁴¹ NC Department of Natural and Cultural Resources. Division of Parks and Recreation. *Find a Park*. http://www.ncparks.gov/find-a-park

⁴² NC SHPO. North Carolina Listings in the National Register of Historic Places. http://www.hpo.ncdcr.gov/NR-PDFs.html

⁴³ National Association of Tribal Historical Preservation Officers (NATHPO). http://nathpo.org/wp/thpos/find-a-thpo/

⁴⁴ U.S. Department of Housing and Urban Development (HUD). EGIS. Tribal Directory Assessment Tool (TDAT). https://egis.hud.gov/tdat/

⁴⁵ NC DEQ NHP Mapper. <u>http://ncnhde.natureserve.org/content/map</u>

⁴⁶ NC DEQ Division of Air Quality (DAQ). *Monitoring Data by Site*. http://deq.nc.gov/about/divisions/air-quality/air-quality-data/current-monitoring-data-by-site

⁴⁷ NC Administrative Code. Title 15A- Environmental Quality. Chapter 02- Environmental Management. http://reports.oah.state.nc.us/ncac.asp?folderName=\Title%2015A%20-%20Environmental%20Quality

⁴⁸ NC DEQ DAQ. State Implementation Plans. https://deq.nc.gov/about/divisions/air-quality/air-quality-planning/state-implementation-plans

⁴⁹ NC DEQ DAQ. Attainment Status of National Ambient Air Quality Standards (NAAQS). http://deq.nc.gov/about/divisions/air-quality-planning/attainment

⁵⁰ US EPA. *Local Air Trends*. http://www.epa.gov/airtrends/where.html

not contribute adversely to air quality and do not increase transportation facilities in a non-attainment area. The area has low potential of radon⁵¹. There are no facilities monitored by the EPA for air emissions within 1 mile⁵². Sources of air emissions include particulate matter and carbon dioxide generated during construction and may result in minor nuisance odors. All construction machinery will be operated with proper noise and air quality control devices.

5.13 Noise Levels

The project is not located near noise-producing elements other than equipment operations at the RWPS. The project area is located outside corporate limits, approximately 3 miles away from central Mt. Gilead. Current noise levels in the project area emanate primarily from vehicular traffic. The County's noise ordinance⁵³ generally requires mufflers on construction equipment, which would be temporary. There are no expected potential impairments of any major highways or transportation projects (road, bike, pedestrian, or rail)^{54,55}, railroads^{56,57}, navigable waterways, military airports⁵⁸, or major civil airports^{59,60}. The proposed project does not anticipate overall increase in noise operations.

5.14 TOXIC SUBSTANCES

There are no Superfund (Comprehensive Environmental Response, Compensation, and Liability Information System CERCLIS), Brownfields (Assessment, Cleanup and Redevelopment Exchange System (ACRES), or Radiation (Radiation Info Database) sites within one mile of the project area. The neighboring towns of Norwood and Mt. Gilead have various sites of interest to the EPA, but none are

Normal RWPS operation and maintenance activities involve various chemicals, but proposed improvements are to enhance station operations and efficiency. Operation of construction equipment may have potential to leak fuel, lubricants, and/or additives in small quantities, which if not contained and disposed of properly, could drain towards local surface waters. EPA data is located in **Appendix C**.

⁵¹ US EPA. EPA Map of Radon Zones including State Radon Information and Contacts. http://www.epa.gov/radon/states/northcarolina.html

⁵² US EPA. NEPAssist Mapping Tool. https://www.epa.gov/nepa/nepassist

⁵³ Montgomery County, NC. Code of Ordinances. https://library.municode.com/nc/montgomery county/codes/code of ordinances

⁵⁴ NC DOT. High Profile Projects & Studies. http://www.ncdot.gov/projects/

⁵⁵ NC DOT. Projects- Planning. Comprehensive Transportation Plans. "Montgomery County". https://connect.ncdot.gov/projects/planning/Pages/Comprehensive-Transportation-Plans.aspx

⁵⁶ NC DOT. Rail & Rail-Related Maps. https://connect.ncdot.gov/resources/Rail-Division-Resources/Pages/Rail-RelatedMaps.aspx

⁵⁷ NC DOT. Railroad Crossing Map. https://connect.ncdot.gov/business/trucking/Pages/Rail-Crossing-Map.aspx

⁵⁸ NC Military Bases. http://militarybases.com/north-carolina/

⁵⁹ Federal Aviation Administration (FAA). 2017-2021 National Plan of Integrated Airport Systems (NPIAS) Report. https://www.faa.gov/airports/planning_capacity/npias/reports/

⁶⁰ NC DOT. Airport Locations. https://www.ncdot.gov/divisions/aviation/Pages/nc-airports.aspx

5.15 Environmental Justice Analysis

EPA data (**Appendix C**)^{61,62,63} is derived from ACS 2011-2015 5-year estimates and both illustrate at least 51% of minority and low-income populations of the project area (census block/tract #371239604001). The project intends to provide area-wide benefit to County and will not adversely impact any specific target populations. The demographic profile is not anticipated to change. If note is that multiple neighboring municipalities depend on water supply from the County. This project will replace essential components of the RWSP to help improve water quality and service.

⁶³ U.S. HUD. FY2017 LMISD (Low and moderate income individuals by place and county subdivision) Local Governments by State, Based on 2006-2010 American Community Survey. https://www.hudexchange.info/programs/acs-low-mod-summary-data/acs-low-mod-summary-data-local-government/

⁶¹ US EPA. EJSCREEN: Environmental Justice Screening and Mapping Tool. (Uses 2011-2015 American Community Survey 5-year Estimates). https://www.epa.gov/ejscreen

⁶² U.S. Census Bureau. American Community Survey (ACS). 2011-2015 5-Year Estimates. *Table DP05: ACS Demographic and Housing Estimates*. https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t

5.16 MITIGATIVE MEASURES

Table 7.18. Mitigative Measures

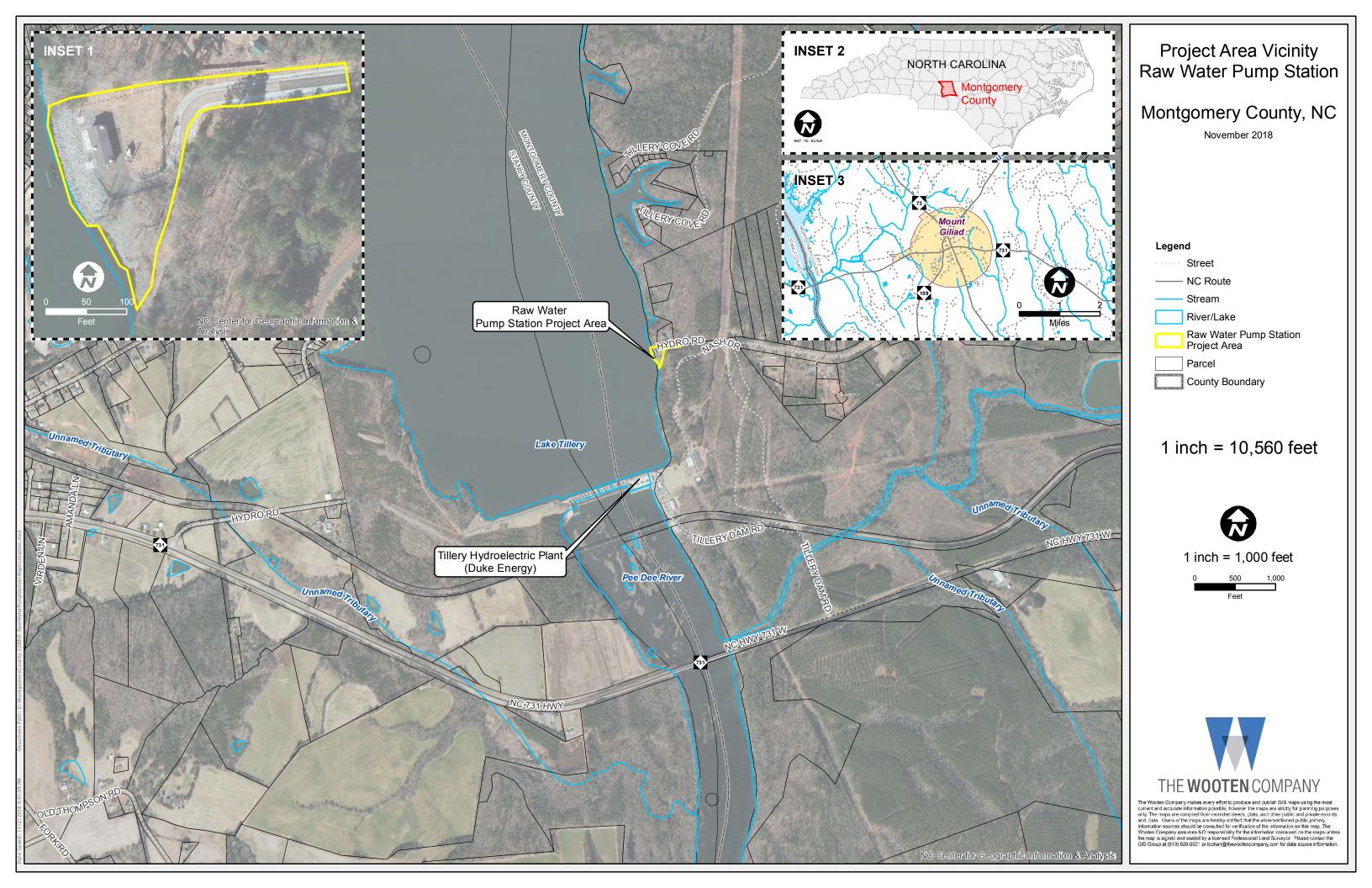
Raw Water Pump Station Improvements

Montgomery County

		Mitigative Measure(s) for		Mitigative Measures for
Resource Category	Potential Direct Impact	Direct Impact	Potential SCI	SCI
Topography & Floodplains	Temporary soil disturbance. New development & replacement of existing structures / equipment	Proper erosion and sedimentation control practices will be followed to prevent downstream impacts from land disturbance. Any new / replaced structures and to be elevated above base flood elevation.	No adverse impact.	N/A
Soils	Temporary soil disturbance. Bank restoration to reduce erosion.	Install and maintain appropriate sedimentation and erosion control devices.	No Impact.	N/A
Prime & Unique Farmland	No Impact. In "built-up" area.	N/A	No Impact.	N/A
Land Use	No Impact. No change in use.	N/A	No Impact.	N/A
Forest Resources	No Impact. No new clearing proposed.	N/A	No Impact.	N/A
Wetlands and Streams	Temporary soil disturbance may increase suspended solids and pollutants from construction machinery in stormwater runoff. No new construction proposed in wetlands. Bank restoration to reduce erosion.	Appropriate sedimentation and erosion control devices. Wetland delineations if needed upon further project surveying/design. Minimum buffer requirements if needed.	No adverse impact. No additional footprint.	Provide routine maintenance on the facility.

	I	T	1	T
Water Resources	Soil disturbance may increase suspended solids and pollutants from construction machinery in stormwater runoff.	Appropriate sedimentation and erosion control devices; immediately contain and cleanup spills from machinery. Minimum buffer requirements if needed.	No adverse impact.	Provide routine maintenance on the facility.
Shellfish, Fish, and their Habitats	Temporary soil disturbance, erosion potential, and increase in turbidity.	Appropriate sedimentation and erosion control devices; immediately contain and cleanup spills from machinery. Minimum buffer requirements if needed.	No adverse impact.	Provide routine maintenance on the facility.
Wildlife and Natural Vegetation	Noise level from construction machinery may temporarily displace wildlife.	Appropriate sedimentation and erosion control devices; immediately contain and cleanup spills from machinery. Minimum buffer requirements if needed. Proper muffling equipment shall be installed on construction equipment.	No adverse impact.	Provide routine maintenance on the facility.
Public Land and Scenic, Recreational, and State Natural Areas	Temporary noise from construction machinery and road closures.	Proper muffling equipment shall be installed on construction equipment and construction activities will be limited to typical weekday business hours.	No adverse impact.	Provide routine maintenance on the facility.
Areas of Archaeological or Historical Value	Temporary noise from construction machinery.	Proper muffling equipment shall be installed on construction equipment.	No adverse impact.	N/A
Air Quality	Emissions from construction machinery.	Use of proper air quality control devices on construction machinery.	No adverse impact.	Provide routine maintenance on the facility.
Noise Levels	Temporary noise from construction machinery.	Proper muffling equipment shall be installed on construction equipment.	No adverse impact.	N/A

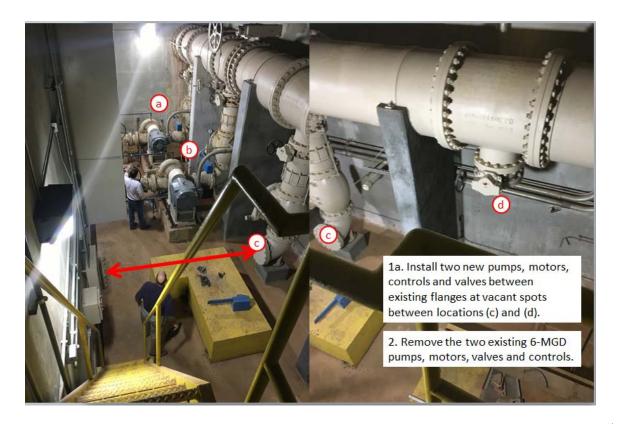
Toxic Substances	Potential to leak fuel, lubricants, and/or additives from construction machinery.	Immediate containment and disposal by Contractor.	No adverse impact.	Provide routine maintenance on the facility.
Environmental Justice	Construction activities would impact the local low-income / minority population. The project intends to provide area-wide benefit to Town. No increase in footprint.	Appropriate sedimentation and erosion control devices; construction during daytime; maintain buffers; install air pollution devices.	No adverse impact.	N/A



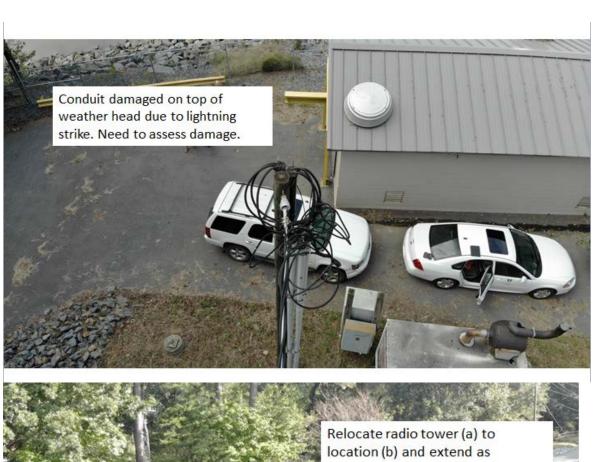
MONTGOMERY COUNTY, NORTH CAROLINA 2018 DWSRF RAW WATER PUMP STATION IMPROVEMENTS PROJECT

APPENDIX 5B

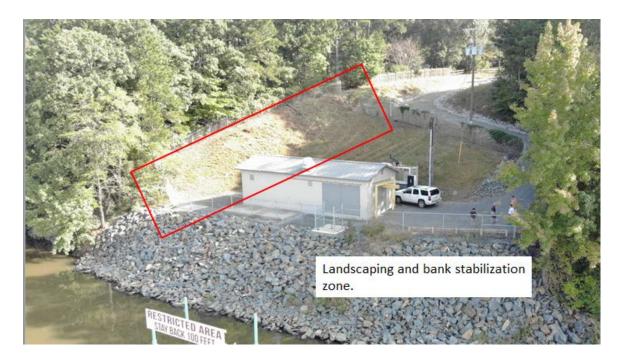
MAP

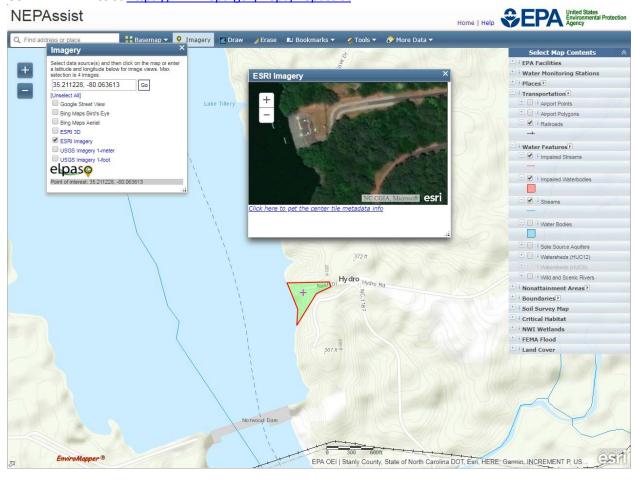

MONTGOMERY COUNTY, NORTH CAROLINA 2018 DWSRF RAW WATER PUMP STATION IMPROVEMENTS PROJECT

APPENDIX 5C
ENVIRONMENTAL SOURCE DOCUMENTATION

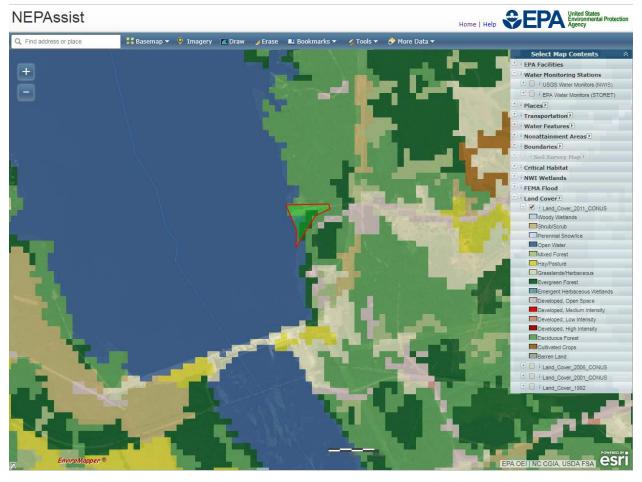

Contents

Site Photos	2
Topography	5
Floodplains	
Soils & Farmland	8
Land Use & Zoning	13
Forest Resources	
Wetlands	
Water Resources	19
Biological Resources	22
Public Lands & Natural Areas	30
Historic Resources	33
Toxic Substances	34
Environmental Justice	36


Site Photos

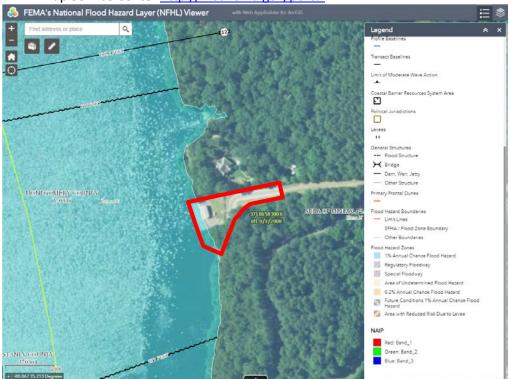


Replace generator in existing location

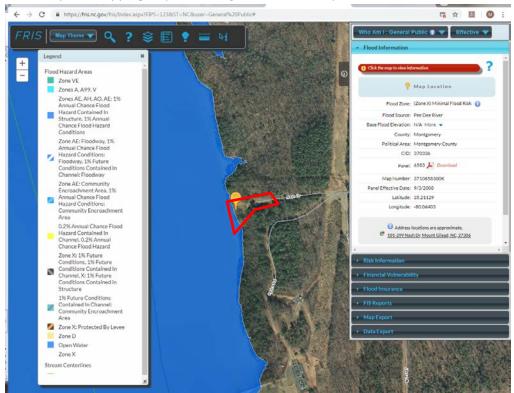


Topography

US EPA NEPA Assist https://www.epa.gov/nepa/nepassist



Land Cover- Project area is woody/forested, adjacent to water



Floodplains

FEMA Map Service Center http://msc.fema.gov/portal

NC Floodplain Mapping http://fris.nc.gov/fris/Home.aspx?ST=NC

Soils & Farmland

USDA Web Soil Survey http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BeC2	Badin-Tarrus complex, 8 to 15 percent slopes, moderately eroded	0.3	21.3%
GoE	Goldston-Badin complex, 15 to 45 percent slopes	1.0	74.0%
W	Water	0.1	4.7%
Totals for Area of Interest		1.4	100.0%

BeC2—Badin-Tarrus complex, 8 to 15 percent slopes, moderately eroded

Map Unit Setting

National map unit symbol: 2dz66 Elevation: 200 to 650 feet

Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F

Frost-free period: 200 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Badin, moderately eroded, and similar soils: 60 percent Tarrus, moderately eroded, and similar soils: 35 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Badin, Moderately Eroded

Setting

Landform: Hillslopes on ridges

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Residuum weathered from metavolcanics and/or argillite

Typical profile

Ap - 0 to 8 inches: silty clay loam

Bt - 8 to 27 inches: clay

BC - 27 to 37 inches: silty clay loam Cr - 37 to 80 inches: weathered bedrock

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 6.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C Hydric soil rating: No

Description of Tarrus, Moderately Eroded

Setting

Landform: Hillslopes on ridges

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Residuum weathered from metavolcanics and/or argillite

Typical profile

Ap - 0 to 10 inches: silty clay loam Bt - 10 to 32 inches: silty clay BC - 32 to 47 inches: silt loam

Cr - 47 to 80 inches: weathered bedrock

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 40 to 60 inches to paralithic bedrock

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 7.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Goldston, moderately eroded

Percent of map unit: 5 percent Landform: Hillslopes on ridges

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Hydric soil rating: No

GoE-Goldston-Badin complex, 15 to 45 percent slopes

Map Unit Setting

National map unit symbol: 2dz6x

Elevation: 200 to 650 feet

Mean annual precipitation: 37 to 60 inches Mean annual air temperature: 59 to 66 degrees F

Frost-free period: 200 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Goldston and similar soils: 55 percent Badin and similar soils: 30 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Goldston

Setting

Landform: Hillslopes on ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Residuum weathered from metavolcanics and/or argillite

Typical profile

A - 0 to 7 inches: very channery silt loam Bw - 7 to 11 inches: very channery silt loam Cr - 11 to 23 inches: weathered bedrock R - 23 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 45 percent

Depth to restrictive feature: 10 to 20 inches to paralithic bedrock; 20 to 40 inches

to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D Hydric soil rating: No

Description of Badin

Setting

Landform: Hillslopes on ridges

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Parent material: Residuum weathered from metavolcanics and/or argillite

Typical profile

A - 0 to 2 inches: channery silt loam E - 2 to 9 inches: channery silt loam

Bt1 - 9 to 21 inches: channery silty clay loam

Bt2 - 21 to 36 inches: silty clay

Cr - 36 to 45 inches: weathered bedrock R - 45 to 80 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 45 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock; 40 to 80 inches

to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00

to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 6.1 inches)

Interpretive groups

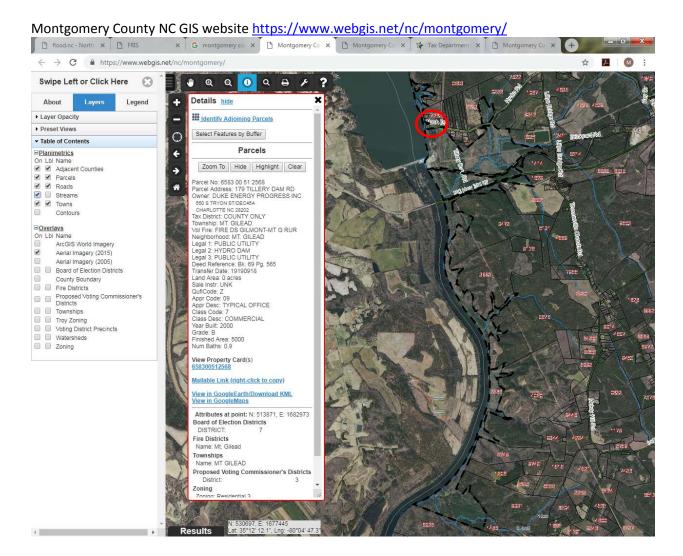
Land capability classification (irrigated): None specified

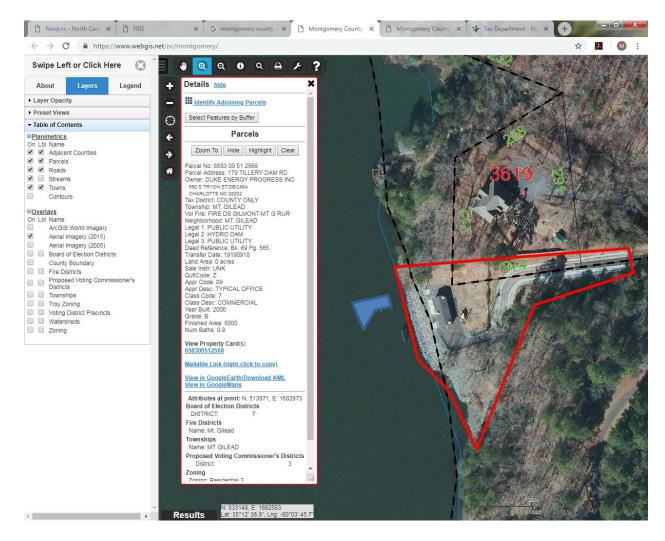
Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Tarrus

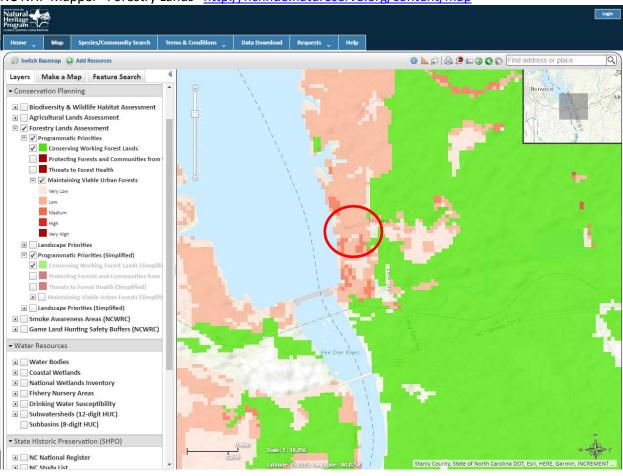

Percent of map unit: 5 percent Landform: Hillslopes on ridges


Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Convex

Hydric soil rating: No

Land Use & Zoning

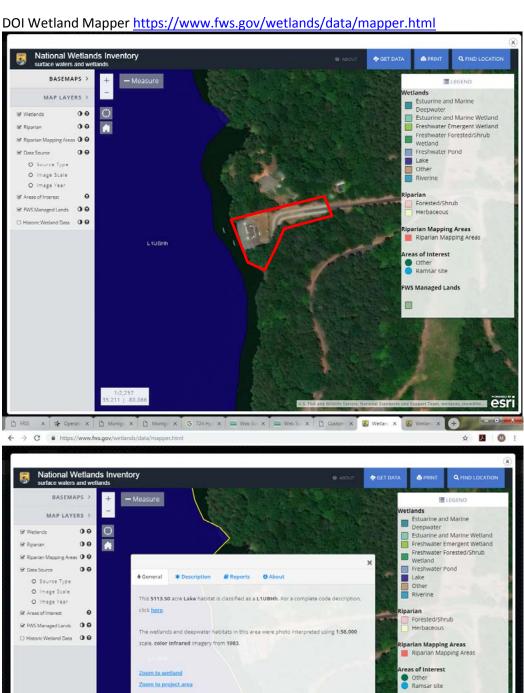


Adjacent to Parcel No 6583 00 23 3619 at 111 NASH DR

Montgomery County Public Utilities Department
http://www.montgomerycountync.com/departments/public-utilities/operations
WTP located at 724 Hydro Road, Mount Gilead, NC 27306

Forest Resources


NC NHP Mapper "Forestry Lands" http://ncnhde.natureserve.org/content/map



Wetlands

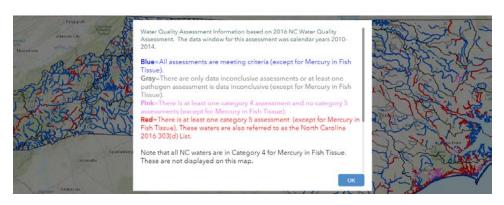
US EPA NEPA Assist https://www.epa.gov/nepa/nepassist

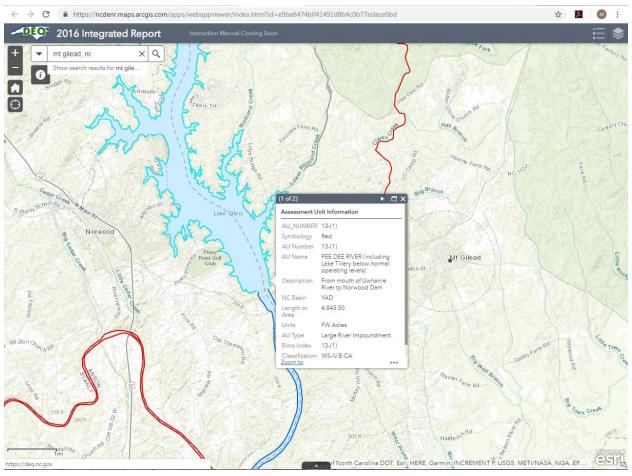
~1 Mile buffer of approximate project area, topographic base layer, wetland, critical habitat, water features-Several NWI areas within 1 mile of project area, and no critical habitats

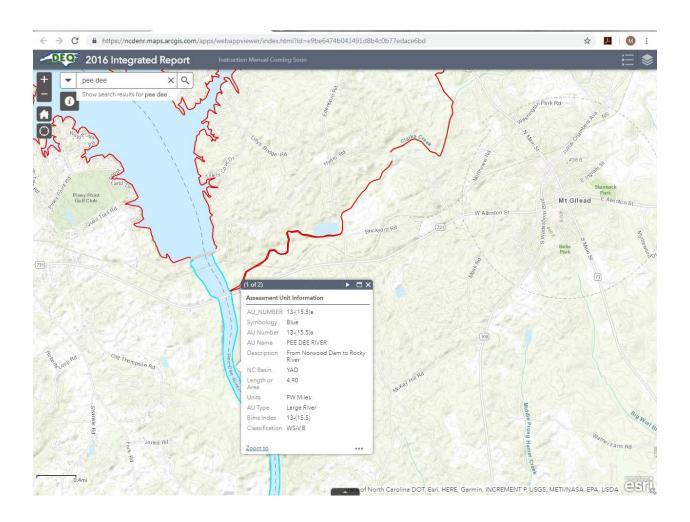
FWS Managed Lands

esri

NWI Wetland Classification Codes https://fwsprimary.wim.usgs.gov/decoders/wetlands.aspx
Classification code: L1UBHh


- System Lacustrine (L): The Lacustrine System includes wetlands and deepwater habitats with all of the following characteristics: (1) situated in a topographic depression or a dammed river channel; (2) lacking trees, shrubs, persistent emergents, and emergent mosses or lichens with 30 percent or greater areal coverage; and (3) total area of at least 8 hectares (ha) (20 acres). Similar wetlands and deepwater habitats totaling less than 8 ha are also included in the Lacustrine System if an active wave-formed or bedrock shoreline feature makes up all or part of the boundary, or if the water depth in the deepest part of the basin equals or exceeds 2.5 m (8.2 ft) at low water. Lacustrine waters may be tidal or nontidal, but ocean-derived salinity is always less than 0.5 ppt.
- Subsystem **Limnetic (1)**: This Subsystem includes all deepwater habitats (i.e., areas > 2.5 m [8.2 ft] deep below low water) in the Lacustrine System. Many small Lacustrine Systems have no Limnetic Subsystem.
- Class **Unconsolidated Bottom (UB)**: Includes all wetlands and deepwater habitats with at least 25% cover of particles smaller than stones (less than 6-7 cm), and a vegetative cover less than 30%.
- Water Regime **Permanently Flooded (H)**: Water covers the substrate throughout the year in all years.
- Special Modifier **Diked/Impounded (h)**: These wetlands have been created or modified by a man-made barrier or dam that obstructs the inflow or outflow of water.


Water Resources


Yadkin - Pee Dee River Basin Plan HUC 03040104

NC DEQ DWR. Water Resources Data, Statistics and Maps. Integrated Report Files.

https://deq.nc.gov/about/divisions/water-resources/planning/modeling-assessment/water-quality-data-assessment/integrated-report-files

Local Water Supply Plan

http://www.ncwater.org/Water Supply Planning/Local Water Supply Plan/search.php

Montgomery Co

2017

Complete

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled PROVISIONAL have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

1. System Information

Contact Information

Water System Name: Montgomery Co PWSID: 03-62-010 724 Hydro Road Mailing Address: County

Ownership: Mount Gilead, NC 27306

Contact Person: Matthew H. Morris Director of Public Utilities Title:

Phone: 910-439-6198 Fax: 910-439-9488

Distribution System

Estimated % of lines Size Range (Inches) Line Type Asbestos Cement 6, 16 3.86 % 6-24 Ductile Iron 6.13 % 2 Galvanized Iron 0.05 % UKWN Other 0.35 % 2-12 89.61 % Polyvinyl Chloride

What are the estimated total miles of distribution system lines? 365 Miles

How many feet of distribution lines were replaced during 2017? 788 Feet

How many feet of new water mains were added during 2017? 0 Feet

How many meters were replaced in 2017? 0

How old are the oldest meters in this system? 23 Year(s)

How many meters for outdoor water use, such as irrigation, are not billed for sewer services? 0

What is this system's finished water storage capacity? 3.9200 Million Gallons

Has water pressure been inadequate in any part of the system since last update? No

Programs

Does this system have a program to work or flush hydrants? Yes, As Needed

Does this system have a valve exercise program? Yes, As Needed

Does this system have a cross-connection program? Yes

Does this system have a program to replace meters? Yes

Does this system have a plumbing retrofit program? No

Does this system have an active water conservation public education program? No

Does this system have a leak detection program? No

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? 0.0000 MGD For how many connections? 0

Does this system have an interconnection with another system capable of providing water in an emergency? No

Interconnecting with neighboring systems is challenging due to crossing Lake Tillery to the west and IBT issues to the east. Neighbors to the north and south are at significant distances.

2. Water Use Information

Service Area

Sub-Basin(s) % of Service Population County(s) % of Service Population

Yadkin River (18-1) 86 % Montgomery 100 %

Deep River (02-2) 10 % Lumber River (09-1) 3 % Uwharrie River (18-3) 1 %

What was the year-round population served in 2017? 14,473
Has this system acquired another system since last report? No

Water Use by Type

Type of Use	Metered Connections	Metered Average Use (MGD)	Non-Metered Connections	Non-Metered Estimated Use (MGD)
Residential	5,610	0.4660	0	0.0000
Commercial	149	0.2820	0	0.0000
Industrial	0	0.0000	0	0.0000
Institutional	0	0.0000	0	0.0000

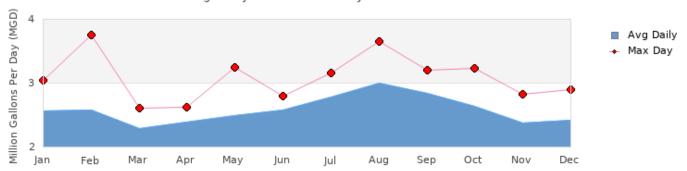
How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 0.0250 MGD

Water Sales

Developer	DWOLD	Average	Days		Contract		Required to	Pipe Size(s)	Use
Purchaser	PWSID	Daily Sold (MGD)	Used	MGD	Expiration	Recurring	comply with water use restrictions?	(Inches)	Type
Carolina Forest	03-62-106	0.0500	365	0.0500	2040	Yes	Yes	8	Regular
Town of Biscoe	03-62-035	0.3160	365	0.9000	2045	Yes	Yes	16,12	Regular
Town of Candor	03-62-030	0.1230	365	0.1700	2045	Yes	Yes	12, 8	Regular
Town of Mt Gilead	03-62-015	0.1060	365	0.2000	2045	Yes	Yes	24,20	Regular
Town of Robbins	03-63-015	0.1940	365	0.2500	2019	Yes	Yes	10	Regular
Town of Star	03-62-025	0.0640	365	0.1130	2045	Yes	Yes	8, 12	Regular
Town of Troy	03-62-020	0.4170	365	0.6000	2045	Yes	Yes	20,16	Regular
Wood Run	03-62-107	0.0640	365	0.0500	2040	Yes	Yes	12	Regular

The towns of Candor, Star, Biscoe, Troy and Mount Gilead all renewed contracts in 2005 for 40 years. They are not to exceed 60 MG per month.

The contract value of 0.9 MGD is the amount of water Biscoe would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.17 MGD is the amount of water Candor would need to purchase in order to keep their projected demand below or around 80% of supply.


The contract value of 0.113 MGD is the amount of water Star would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.6 MGD is the amount of water Troy would need to purchase in order to keep their projected demand below or around 80% of supply. The contract value of 0.2 MGD is the amount of water Mount Gilead would need to purchase in order to keep their projected demand below or around 80% of supply.

3. Water Supply Sources

Monthly Withdrawals & Purchases

	Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)		Average Daily Use (MGD)	Max Day Use (MGD)
Jan	2.5600	3.0360	May	2.4860	3.2410	Sep	2.8430	3.2000
Feb	2.5700	3.7550	Jun	2.5720	2.7890	Oct	2.6310	3.2220
Mar	2.2780	2.6040	Jul	2.7760	3.1520	Nov	2.3710	2.8270
Apr	2.3810	2.6240	Aug	2.9960	3.6490	Dec	2.4120	2.9010

Montgomery Co's 2017 Monthly Withdrawals & Purchases

Surface Water Sources

Pee Dee River	Lake Tillery	MGD 2.5700	Days Used 365	3.7550	MGD 6.0000	* Qualifier C	Storage (MG) 774.0000
Stream	Reservoir	Average D	aily Withdrawal	Maximum Day Withdrawal (MGD)	vvaler Suppry		Usable On-Stream Raw Water Supply

^{*} Qualifier: C=Contract Amount, SY20=20-year Safe Yield, SY50=50-year Safe Yield, F=20% of 7Q10 or other instream flow requirement, CUA=Capacity Use Area Permit

Surface Water Sources (continued)

Pee Dee River	Lake Tillery	4,600	Yes	Yadkin River (18-1)	Montgomery		Regular
Stream	Reservoir	Drainage Area (sq mi)	Metered?	Sub-Basin	County	Year Offline	Use Type

What is this system's off-stream raw water supply storage capacity? 0 Million gallons

Are surface water sources monitored? Yes, Daily

Are you required to maintain minimum flows downstream of its intake or dam? $\,$ No $\,$

Does this system anticipate transferring surface water between river basins? Yes

IBT:

Sale of water to the Town of Robbins - Deep River Basin (02-2)

Sale of water to customers in the Lumber River Basin (09-1)

Water Purchases From Other Systems

Seller	PWSID	Average Daily Purchased	Days		Contract		Required to comply with water	Pipe Size(s)	Use
Sellel	FWSID	(MGD)	Used	MGD	Expiration	Recurring	use restrictions?	(Inches)	Type
Town of Troy	03-62-020	0.0000	0	0.0000	2045	Yes	Yes	8, 12	Emergency

Town of Troy is buy back scenario.

Water Treatment Plants

Plant Name
Permitted Capacity (MGD)
Is Raw Water Metered? Is Finished Water Ouput Metered? Source

Montgomery County WTP
6.0000
Yes
Yes
Yes
Lake Tillery

Did average daily water production exceed 80% of approved plant capacity for five consecutive days during 2017? No

If yes, was any water conservation implemented?

Did average daily water production exceed 90% of approved plant capacity for five consecutive days during 2017? No

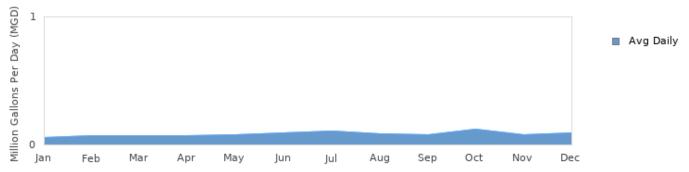
If yes, was any water conservation implemented?

Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? No

4. Wastewater Information

Monthly Discharges

Average Daily
Discharge (MGD)


Average Daily
Discharge (MGD)

Discharge (MGD)

Discharge (MGD)

Montgomery Co's 2017 Monthly Discharges

How many sewer connections does this system have? 158

How many water service connections with septic systems does this system have? 4,258

Are there plans to build or expand wastewater treatment facilities in the next 10 years? No

Wastewater discharge is related to NPDES permit No. 0080322 for alum sludge treatment facility. Sewer connections are MCPU collections systems that send wastewater to local municipalities at their WWTPs.

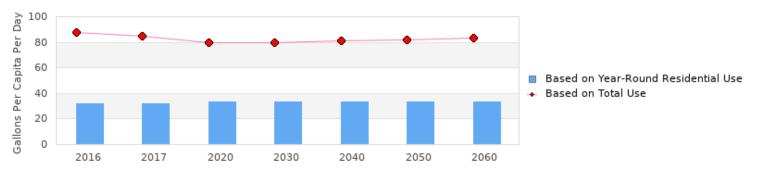
	vater	

Permit Number	Permitted Capacity (MGD)	Design Capacity (MGD)	Average Annual Daily Discharge (MGD)	Maximum Day Discharge (MGD)	Receiving Stream	Receiving Basin
NC0080322	0.2880	0.3800	0.0628		Unamed Trib. to Clarks Creek	Yadkin River (18- 1)
Wastewater Inter	connections					
		DIMOID		Average D	Contract	
Water Syst	em	PWSID	Type	MGD	Days Used	Maximum (MGD)
Town of Candor		03-62-030	Discharging	0.0150	365	0.0000
Town of Troy		03-62-020	Discharging	0.0032	365	0.0000

5. Planning

Projections

	2017	2020	2030	2040	2050	2060
Year-Round Population	14,473	14,900	15,870	16,900	18,000	19,170
Seasonal Population	0	0	0	0	0	0
Residential	0.4660	0.4970	0.5290	0.5630	0.6000	0.6390
Commercial	0.2820	0.3090	0.3400	0.3740	0.4110	0.4520
Industrial	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Institutional	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
System Process	0.0250	0.0400	0.0420	0.0440	0.0460	0.0480
Unaccounted-for	0.4630	0.3390	0.3650	0.3930	0.4240	0.4560


Residential: projections based on 6.5% growth every 10 years - more aggressive than the NC Department of Commerce's 3% / 10 years for Montgomery County;

Commercial: projections based on 10% growth / 10 years - again an aggressive rate to stress this planning exercise

Future Water Sales

Purchaser	PWSID		Contract		Pipe Size(s)	(Inches)	Use Type
		MGD	Year Begin	Year End			
Robbins Water System	03-63-015	0.5000	2020				Regular
Demand v/s Percent of Supply	у						
		2017	2020	2030	2040	2050	2060
Surface Water Supply		6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Ground Water Supply		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Purchases		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Future Supplies			0.0000	0.0000	0.0000	0.0000	0.0000
Total Available Supply (MGD)		6.0000	6.0000	6.0000	6.0000	6.0000	6.0000
Service Area Demand		1.2360	1.1850	1.2760	1.3740	1.4810	1.5950
Sales		1.3340	2.3470	2.3470	2.3470	2.3470	2.3470
Future Sales			0.5000	0.5000	0.5000	0.5000	0.5000
Total Demand (MGD)		2.5700	4.0320	4.1230	4.2210	4.3280	4.4420
Demand as Percent of Supply		43%	67%	69%	70%	72%	74%

Montgomery Co's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

Your long-term water demand is 32 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here. See Section 1 of the plan for practices that could reduce the per capita water demand.

Are there other demand management practices you will implement to reduce your future supply needs?

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs?

How does the water system intend to implement the demand management and supply planning components above?

Additional Information

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning?

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues:

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

Biological Resources

USFWSF County Listing http://www.fws.gov/raleigh/species/cntylist/nc_counties.html

U.S. Fish & Wildlife Service

Endangered Species, Threatened Species, Federal Species of Concern, and Candidate Species,

Montgomery County, North Carolina

Updated: 03-28-2018

Common Name	Scientific name	Federal Status	Record Status
Vertebrate:			
Bald eagle	Haliaeetus leucocephalus	BGPA	Current
Cape Fear shiner Range by Basin	Notropis mekistocholas	E	Current
Red-cockaded woodpecker	Picoides borealis	E	Current
Invertebrate:			
Atlantic pigtoe Range by Basin	Fusconaia masoni	ARS	Current
Brook floater	Alasmidonta varicosa	ARS	Current
Savannah lilliput	Toxolasma pullus	ARS	Current
Vascular Plant:			
Bog spicebush	Lindera subcoriacea	ARS	Current
Georgia aster	Symphyotrichum georgianum	C	Current
Schweinitz's sunflower	Helianthus schweinitzii	E	Current
Smooth coneflower	Echinacea laevigata	E	Historic
Yadkin River goldenrod	Solidago plumosa	C	Current

Nonvascular Plant:

Lichen:

Definitions of Federal Status Codes:

E = endangered. A taxon "in danger of extinction throughout all or a significant portion of its range."

T = threatened. A taxon "likely to become endangered within the foreseeable future throughout all or a significant portion of its range."

C = candidate. A taxon under consideration for official listing for which there is sufficient information to support listing. (Formerly "C1" candidate species.)

BGPA =Bald and Golden Eagle Protection Act. See below.

ARS = At Risk Species. Species that are Petitioned, Candidates or Proposed for Listing under the Endangered Species Act. Consultation under Section 7(a)(2) of the ESA is not required for Candidate or Proposed species; although a Conference, as described under Section 7(a)(4) of the ESA is recommended for actions affecting

species proposed for listing.

FSC=Federal Species of Concern. FSC is an informal term. It is not defined in the federal Endangered Species Act. In North Carolina, the Asheville and Raleigh Field Offices of the US Fish and Wildlife Service (Service) define Federal Species of Concern as those species that appear to be in decline or otherwise in need of conservation and are under consideration for listing or for which there is insufficient information to support listing at this time. Subsumed under the term "FSC" are all species petitioned by outside parties and other selected focal species identified in Service strategic plans, State Wildlife Action Plans, or Natural Heritage Program Lists.

T(S/A) = threatened due to similarity of appearance. A taxon that is threatened due to similarity of appearance with another listed species and is listed for its protection. Taxa listed as T(S/A) are not biologically endangered or threatened and are not subject to Section 7 consultation. See below.

EXP = experimental population. A taxon listed as experimental (either essential or nonessential). Experimental, nonessential populations of endangered species (e.g., red wolf) are treated as threatened species on public land, for consultation purposes, and as species proposed for listing on private land.

P = proposed. Taxa proposed for official listing as endangered or threatened will be noted as "PE" or "PT", respectively.

Bald and Golden Eagle Protection Act (BGPA):

In the July 9, 2007 Federal Register (72:37346-37372), the bald eagle was declared recovered, and removed (delisted) from the Federal List of Threatened and Endangered wildlife. This delisting took effect August 8,2007. After delisting, the Bald and Golden Eagle Protection Act (Eagle Act) (16 U.S.C. 668-668d) becomes the primary law protecting bald eagles. The Eagle Act prohibits take of bald and golden eagles and provides a statutory definition of "take" that includes "disturb". The USFWS has developed National Bald Eagle Management Guidelines to provide guidance to land managers, landowners, and others as to how to avoid disturbing bald eagles. For mor information, visit http://www.fws.gov/migratorybirds/baldeagle.htm

<u>Threatened due to similarity of appearance(T(S/A)):</u>

In the November 4, 1997 Federal Register (55822-55825), the northern population of the bog turtle (from New York south to Maryland) was listed as T (threatened), and the southern population (from Virginia south to Georgia) was listed as T(S/A) (threatened due to similarity of appearance). The T(S/A) designation bans the collection and interstate and international commercial trade of bog turtles from the southern population. The T(S/A) designation has no effect on land management activities by private landowners in North Carolina, part of the southern population of the species. In addition to its official status as T(S/A), the U.S. Fish and Wildlife Service considers the southern population of the bog turtle as a Federal species of concern due to habitat loss.

Definitions of Record Status:

Current - the species has been observed in the county within the last 50 years.

Historic - the species was last observed in the county more than 50 years ago.

Obscure - the date and/or location of observation is uncertain.

Incidental/migrant - the species was observed outside of its normal range or habitat.

Probable/potential - the species is considered likely to occur in this county based on the proximity of known records (in adjacent counties), the presence of potentially suitable habitat, or both.

USFWS IPaC Report https://ecos.fws.gov/ipac/

IPaC

U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Montgomery County, North Carolina

Local office

Raleigh Ecological Services Field Office

(919) 856-4520

(919) 856-4556

MAILING ADDRESS

Post Office Box 33726 Raleigh, NC 27636-3726

PHYSICAL ADDRESS

551 Pylon Drive, Suite F

NOT FOR CONSULTATION

Raleigh, NC 27606-1487

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Birds

NAME STATUS

Red-cockaded Woodpecker Picoides borealis

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/7614

Endangered

Flowering Plants

NAME STATUS

Schweinitz's Sunflower Helianthus schweinitzii

Endangered

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/3849

Smooth Coneflower Echinacea laevigata

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/3473

Endangered

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Sep 1 to Jul 31

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Breeds May 10 to Sep 10

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (I)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

■ probability of presence ■ breeding season | survey effort − no data

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen</u> science datasets .

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

Wildlife refuges and fish hatcheries

REFUGE AND FISH HATCHERY INFORMATION IS NOT AVAILABLE AT THIS TIME

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

WETLAND INFORMATION IS NOT AVAILABLE AT THIS TIME

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

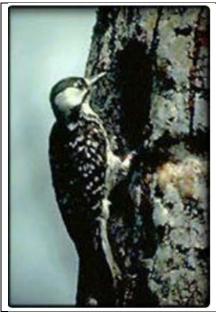
Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions


Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Species Profiles USFWS Environmental Conservation Online System (ECOS) & Raleigh Office

Red-cockaded Woodpecker (*Picoides borealis*) https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=7614 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=7614 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=7614 https://www.fws.gov/raleigh/species/es red-cockaded woodpecker.html

STATUS: Endangered; A species in danger of extinction throughout all or a significant portion of its range.

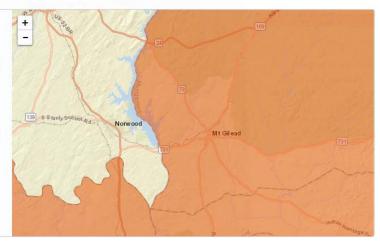
DESCRIPTION: 22 cm. Rather small black-and-white woodpecker with longish bill. Above black barred white. Below white with black spots on flanks. Black crown, nape and moustachial stripe border white cheeks and side of neck. Male has small red mark on the side of nape. Juvenile browner with variable extent of red on crown.

RANGE: The species historical range included Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Texas, Virginia.

HABITAT: forests with trees old enough for roosting, generally at least 60-120 years old, depending on species of pine. The most prominent adaptation of RCWs is their use of living pines for cavity excavation.

CRITICAL HABITAT: NO critical habitat has been designated for this species THREATS: Loss of suitable habitat, especially longleaf pine

Current Listing Status Summary


Status	Date Listed	Lead Region	Where Listed
Endangered	10/13/1970	Southeast Region (Region 4)	Wherever found Additional species information

» Range Information

then use the zoom tool.

Zoom in! Some species' locations may be small and hard to see from a wide perspective. To narrow-in on locations, check the state and county lists (below) and

Schweinitz's Sunflower (*Helianthus schweinitzii*) https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3849 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3849 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3849 https://www.fws.gov/raleigh/species/es schweinitz sunflower.html

Schweinitz's Sunflower. Credit: Dale Suiter.

STATUS: Endangered; A species in danger of extinction throughout all or a significant portion of its range.

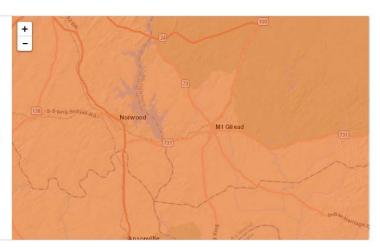
DESCRIPTION: Perennial that regularly grows approx. 6.5 feet (ft) to occasionally 16 ft (4.8 m). Thickened roots are used to store starch. Stem is purplish in color, and upper third bears secondary branches at 45-degree angles. Leaves arranged in pairs on lower part of the stem but usually occur singly (or alternate) on upper parts. Leaves attached to stem at right angles, and tips of leaves tend to droop. Leaves are thick and stiff, with a rough upper surface. Produces small yellow flowers from late August until frost. Species is able to colonize through dispersal of seeds that readily germinate without a dormant period.

RANGE: Found in the central Piedmont region of NC & SC. Best Search Time: late August through October

HABITAT: Occurs in full to partial sun and is found in areas with poor soils, such as thin clays that vary from wet to dry. It is believed that this species once occurred in natural forest openings or grasslands. Many of the remaining populations occur along roadsides.

CRITICAL HABITAT: NO critical habitat has been designated for this species

THREATS: Habitat destruction, fire suppression, alteration of native habitat, roadside and utility right of way maintenance, industrial development, mining, encroachment by exotic species, and highway construction and improvement have all contributed to the decline. This species occurs in many rapidly developing areas within the piedmont region. As these areas develop, habitat is destroyed.


Current Listing Status Summary

Status	Date Listed	Lead Region	Where Listed
Endangered	05/07/1991	Southeast Region (Region 4)	Wherever found

» Range Information

Current Range

Zoom in! Some species' locations may be small and hard to see from a wide perspective. To narrow-in on locations, check the state and county lists (below) and then use the zoom tool.

Smooth Coneflower (*Echinacea laevigata*) https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3473 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3473 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3473 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3473 https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=3473 https://www.fws.gov/raleigh/species/essmooth <a href="https://www.fws.gov/raleigh/species/essmoot

Smooth Coneflower

STATUS: Endangered; A species in danger of extinction throughout all or a significant portion of its range.

DESCRIPTION: Perennial herb in the Aster family (Asteraceae) that grows up to 3.3 feet (ft) tall from vertical root stock. Large elliptical to broadly lanceolate basal leaves may reach 8" in length, 3" in width, taper into long petioles toward the base, and are smooth to slightly rough in texture. Stems are smooth with few leaves. Mid-stem leaves are smaller than the basal leaves. Flower heads are usually solitary. Rays of the flowers (petal-like structures) are light pink to purplish in color, usually drooping, and 2-3.2" long. Flowering occurs from late May through mid-July. Fruits develop from late June to Sept. Fruiting structures often persist through the fall. Reproduction is accomplished both sexually (by seed) and asexually (by rhizome).

RANGE: Currently occurs in Virginia, North Carolina, South Carolina, and Georgia. Best Search Time: late May through October

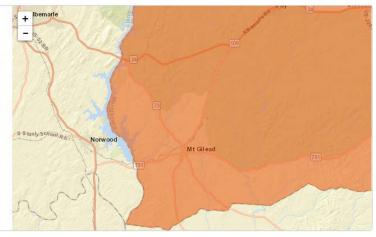
HABITAT: Typically found in open woods, glades, cedar barrens, roadsides, clearcuts, dry limestone bluffs, and power line rights-of-way, usually on magnesium and calcium rich soils associated with amphibolite, dolomite or limestone (in VA), gabbro (in NC & VA), diabase (in NC & SC), and marble (in SC & GA). Occurs in plant communities that have been described as xeric hardpan forests, diabase glades or dolomite woodlands. Optimal sites characterized by abundant sunlight and little competition in the herbaceous layer. Natural fires & large herbivores historically influenced the vegetation in this species' range. Many herbs associated with Smooth coneflower are also sunloving species that depend on periodic disturbances to reduce the shade and competition of woody plants.

CRITICAL HABITAT: NO critical habitat has been designated for this species

THREATS: Fire suppression and habitat destruction resulting from highway construction, residential and commercial development as well as maintenance activities in roadside and utility rights of way. Collection from the wild for horticultural and medicinal uses could also threaten.

Current Listing Status Summary

Status	Date Listed	Lead Region	Where Listed
Endangered	10/08/1992	Southeast Region (Region 4)	Wherever found


» Range Information

Current Range

Wherever found

Zoom in! Some species' locations may be small and hard to see from a wide perspective. To narrow-in on locations, check the state and county lists (below) and then use the zoom tool.

East of project area Basin

Cape Fear Shiner (Notropis mekistocholas) https://ecos.fws.gov/ecp0/profile/speciesProfile?sld=6063

https://www.fws.gov/raleigh/species/es cape fear shiner.html

STATUS: Endangered

DESCRIPTION: It is a small (approx. 2" long), yellowish minnow with a black band along the sides of its body. Fins are yellow and somewhat pointed. It has a black upper lip, and the lower lip bears a thin black bar along its margin. Known to consume plant and animal material. However, unlike most other minnows in the genus *Notropis*, the Cape Fear shiner's digestive tract is modified primarily for a plant diet by having an elongated, convoluted intestine.

RANGE: Endemic to the upper Cape Fear River Basin in the Central Piedmont of NC. The species is known from tributaries and mainstreams of the Deep River, Haw River, Rocky River and Cape Fear River in Chatham, Harnett, Lee, Moore and Randolph counties.

HABITAT: Generally associated with gravel, cobble, and boulder substrates, and has been observed in slow pools, riffles, and slow runs. These areas occasionally support water willow, which may be used as cover or protection from predators (e.g. flathead catfish, bass, and crappie. Can be found swimming in schools of other minnow species but is never the most abundant species. During spawning season, May - July, adults move to slower flowing pools to lay eggs on the rocky substrate. Juveniles are often found in slack water, among large rock outcrops of the midstream, and in flooded side channels and pools. Are sexually mature after their first year, and are known to live up to 6 years in captivity.

CRITICAL HABITAT: Wherever Found

THREATS: Habitat loss and degradation. The species' habitat becomes unsuitable when flow or water levels change from dams or other stream alterations. These isolate shiners into small pockets of suitable habitat, thus making them vulnerable to extirpation.

Current Listing Status Summary


Status Date Listed		Lead Region	Where Listed	
Endangered	09/25/1987	Southeast Region (Region 4)	Wherever found	

» Range Information

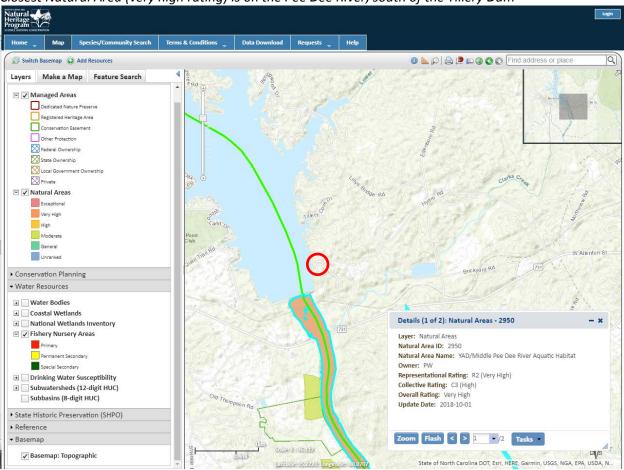
Current Range

Zoom in! Some species' locations may be small and hard to see from a wide perspective. To narrow-in on locations, check the state and county lists (below) and then use the zoom tool.

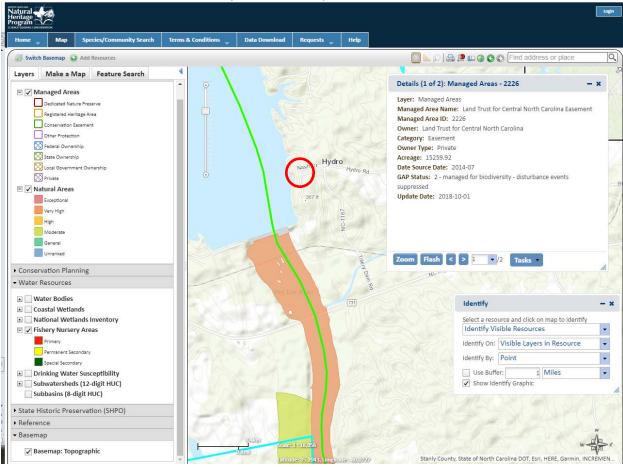
Species NHP Table https://www.ncnhp.org/data/species-community-search

TAXONOMIC GROUP	SCIENTIFIC NAME	COMMON NAME	NC	US STATUS	HABITAT COMMENT	ТОРО МАР	TOPO MAP STATUS
Vascular Plant	Helianthus schweinitzii	Schweinitz's Sunflower	E	E	open woods, roadsides, and other rights-of- way	Mt Gilead W	Current
Freshwater Bivalve	Lampsilis cariosa	Yellow Lampmussel	E		Chowan, Roanoke, Neuse, Tar, Cape Fear, Lumber, Yadkin-Pee Dee drainages	Mt Gilead W	Current
Freshwater Bivalve	Villosa vaughaniana	Carolina Creekshell	E		Cape Fear, Yadkin-Pee Dee, and Catawba drainages (endemic to North Carolina and adjacent South Carolina)	Mt Gilead W	Current
Amphibian	Ambystoma talpoideum	Mole Salamander	SC		breeds in fish-free semipermanent woodland ponds; forages in adjacent woodlands	Mt Gilead W	Historical
Freshwater Bivalve	Elliptio folliculata	Pod Lance	SC		Cape Fear, Lumber, and Yadkin-Pee Dee drainages	Mt Gilead W	Current
Freshwater Bivalve	Elliptio roanokensis (syn. Elliptio judithae)	Roanoke Slabshell	SC		Roanoke, Tar, Neuse, White Oak, Cape Fear, Lumber, and Yadkin-Pee Dee drainages	Mt Gilead W	Current
Freshwater Fish	Carpiodes sp. cf. cyprinus	Carolina Quillback	SR		Yadkin-Pee Dee, Catawba, Broad, and Roanoke drainages	Mt Gilead W	Current
Dragonfly or Damselfly	Gomphurus fraternus (syn. Gomphus fraternus)	Midland Clubtail	SR		rocky rivers	Mt Gilead W	Current
Dragonfly or Damselfly	Gomphurus septima (syn. Gomphus septima)	Septima's Clubtail	SR		rocky rivers	Mt Gilead W	Current
Freshwater Fish	Ictiobus bubalus	Smallmouth Buffalo	SR		French Broad drainage [populations in Atlantic Slope are not tracked]	Mt Gilead W	Current
Reptile	Masticophis flagellum	Coachwhip	SR		dry and sandy woods, mainly in pine/oak sandhills	Mt Gilead W	Historical
Dragonfly or Damselfly	Somatochlora georgiana	Coppery Emerald	SR		creeks and other slow-moving acidic streams, in forested areas	Mt Gilead W	Historical
Freshwater Bivalve	Villosa delumbis	Eastern Creekshell	SR		Cape Fear, Lumber, Yadkin-Pee Dee, and Catawba drainages	Mt Gilead W	Current
Bird	Haliaeetus leucocephalus	Bald Eagle	Т	BGPA	mature forests near large bodies of water (nesting); rivers, lakes, and sounds (foraging) [breeding evidence only]	Mt Gilead W	Current
Freshwater Bivalve	Anodonta implicata	Alewife Floater	Т		Chowan, Roanoke, Cape Fear, and Pee Dee drainages	Mt Gilead W	Current

Freshwater Bivalve	Lampsilis radiata	Eastern Lampmussel	Т	Chowan, Roanoke, Tar, Neuse, Cape Fear, Mt Gilead V Yadkin-Pee Dee drainages	/ Current
Freshwater Bivalve	Ligumia nasuta	Eastern Pondmussel	Т	Chowan, Roanoke, Neuse, Tar, Cape Fear, and Mt Gilead V Yadkin-Pee Dee drainages	/ Current
Freshwater Bivalve	Strophitus undulatus	Creeper	Т	Roanoke, Tar, Neuse, Cape Fear, Yadkin-Pee Mt Gilead V Dee, Catawba, Broad, and French Broad drainages	/ Current
Natural Community	Piedmont Alluvial Forest			Mt Gilead V	/ Current
Natural Community	Piedmont Levee Forest (Typic Subtype)			Mt Gilead V	/ Obscure
Natural Community	Piedmont/Mountain Semipermanent Impoundment (Open Water Subtype)			Mt Gilead V	/ Current
Natural Community	Piedmont/Mountain Semipermanent Impoundment (Piedmont Marsh Subtype)			Mt Gilead V	/ Current
Natural Community	Piedmont/Mountain Semipermanent Impoundment (Shrub Subtype)			Mt Gilead V	/ Current
Natural Community	Upland Depression Swamp Forest			Mt Gilead V	/ Current
Animal Assemblage	Waterbird Colony			Mt Gilead V	/ Current

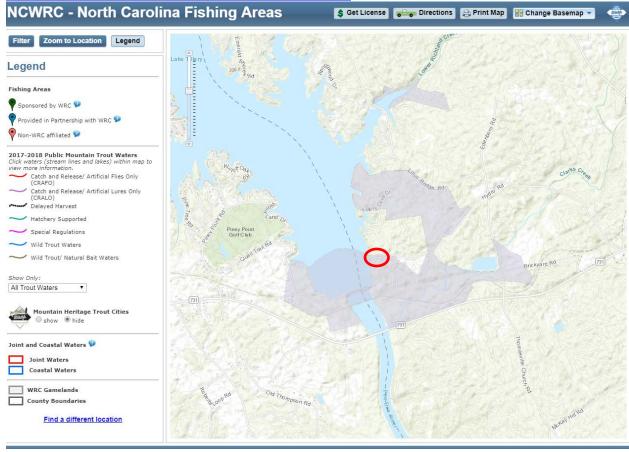

Public Lands & Natural Areas

Managed Areas, Natural Areas, Fish Nursery Areas


NC NHP Mapper http://ncnhde.natureserve.org/content/map

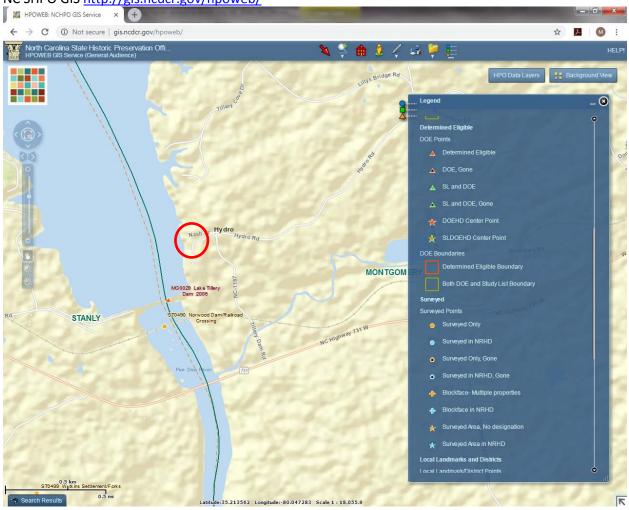
There are no fish nursery areas nearby

Closest Natural Area (very high rating) is on the Pee Dee River, south of the Tillery Dam



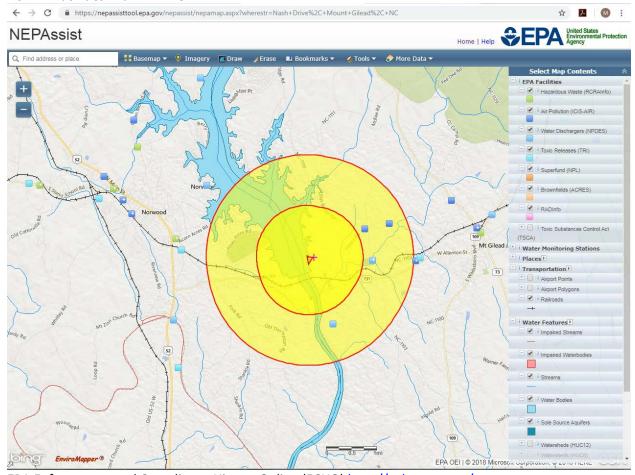
Closest Conservation Easement is SW of the Lake Tillery Dam

Trout Fishing / Gamelands- NC Wildlife Resource Commission Mapper


https://www.ncpaws.org/wrcmapbook/FishingAreas.aspx

Historic Resources

NC SHPO National Register http://www.hpo.ncdcr.gov/NR-PDFs.html

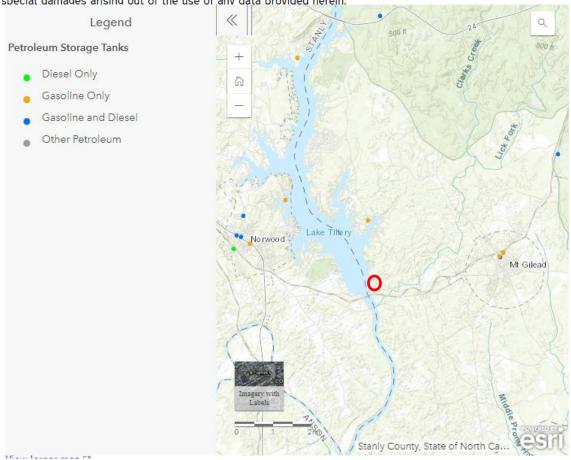

NC SHPO GIS http://gis.ncdcr.gov/hpoweb/

Toxic Substances

US EPA NEPAssist https://www.epa.gov/nepa/nepassist

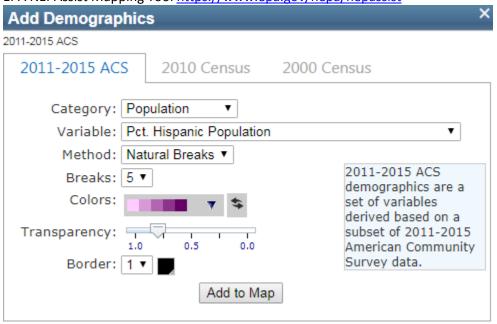
No EPA Facilities within 1 mile

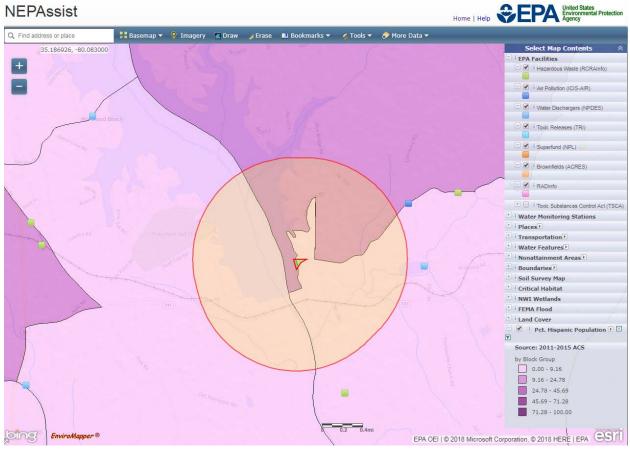
EPA Enforcement and Compliance History Online (ECHO) http://echo.epa.gov/

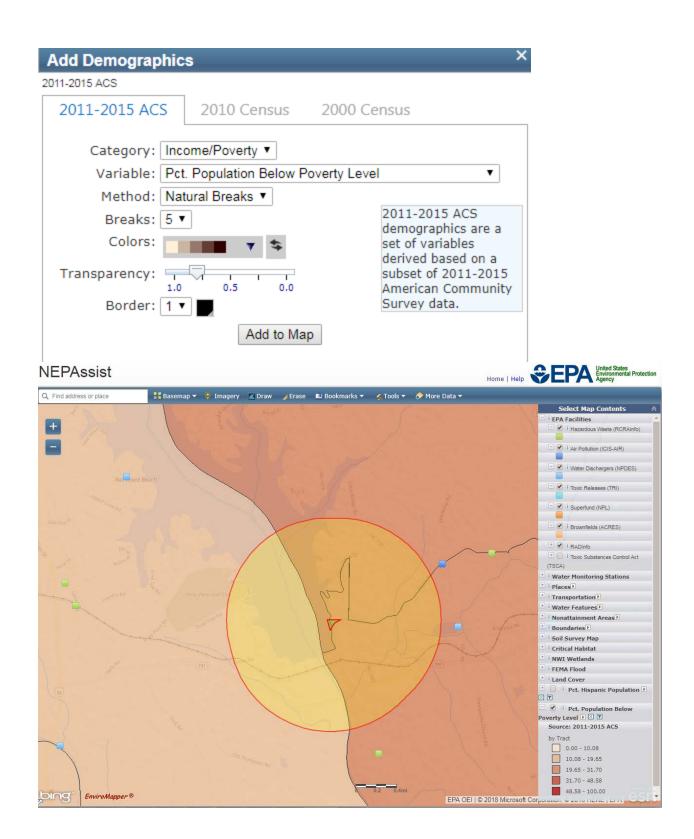

EPA EnviroFacts http://www3.epa.gov/enviro/

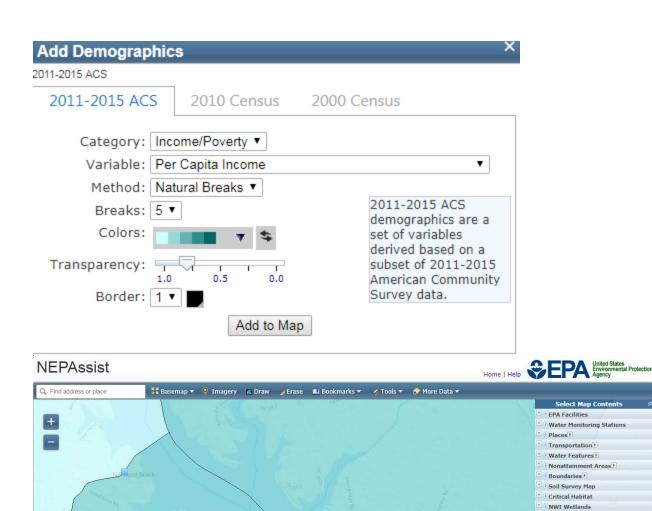
EPA Cleanups in My Community (CIMC) https://www.epa.gov/cleanups-my-community
EPA Facility Registry Service (FRS) Detail Report http://www.epa.gov/enviro/facility-registry-service-frs

- Hazardous Waste Sites- Resource Conservation and Recovery Act Info (RCRA)
- Air Emissions Integrated Compliance Information System (ICIS-AIR)
- Water Dischargers Permit Compliance System (PCS/NPDES)
- Toxics Release Inventory (TRI)
- Superfund (Comprehensive Environmental Response, Compensation, & Liability Info System CERCLIS)
- Brownfields (Assessment, Cleanup and Redevelopment Exchange System (ACRES)
- Radiation (Radiation Info Database)
- <u>Toxic Substances Control Act</u> (TSCA)


UST Registered Tanks Map


Disclaimer: NC DEQ staff have compiled this dataset to the best of their abilities using the resources available to them. NC DEQ neither verifies nor guarantees the accuracy, reliability, or completeness of any data provided. NC DEQ provides this data without warranty of any kind whatsoever, either express or implied, and shall not be liable for incidental, consequential, or special damages arising out of the use of any data provided herein.




Environmental Justice

EPA NEPAssist Mapping Tool https://www.epa.gov/nepa/nepassist

EnviroMapper®

FEMA Flood
Land Cover

EPA OEI | © 2018 Microsoft Corporation, © 2018 HERE | EPA

MONTGOMERY COUNTY, NORTH CAROLINA 2018 DWSRF

RAW WATER PUMP STATION IMPROVEMENTS PROJECT

APPENDIX 5D

AGENCY CONSULTATIONS

- 1. LIST OF AGENCIES CONSULTED
- 2. STATE HISTORIC PRESERVATION OFFICE (NC SHPO)
- 3. U.S. FISH AND WILDLIFE SERVICE (USFWS)
- 4. U.S. ARMY CORPS OF ENGINEERS (USACE)

Agencies Consulted

Renee Shearin
Renee Gledhill-Earley
State Historic Preservation Office
North Carolina Department of Natural and Cultural
Resources
109 East Jones Street (27601)
4617 Mail Service Center (27699-4617)
Raleigh NC
PH: 919-807-6584
renee.shearin@ncdcr.gov
Environmental.Review@ncdcr.gov
(email & CD in mail)

John Ellis
U.S. Fish and Wildlife Service
Raleigh Field Office
551F Pylon Drive
PO Box 33726
Raleigh, NC 27606
PH: 919-856-4520
john_ellis@fws.gov
https://www.fws.gov/raleigh/contact_us.html
(email & CD in mail)

Ross Sullivan
Reg. Specialist-Montgomery County
U.S. Army Corps of Engineers
Raleigh Office
3331 Heritage Trade Drive, Suite 105
Wake Forest, North Carolina 27587
PH: 919-554-4884 ext 25
FX: 919-562-0421

roscoe.l.sullivan@usace.army.mil

http://www.saw.usace.army.mil/Missions/Regulatory-

Permit-Program/Contact/

http://www.saw.usace.army.mil/Missions/Regulatory-

Permit-Program/Contact/County-Locator/

(email & CD in mail)

November 13, 2018

Renee Gledhill-Earley
Environmental Review Technician
State Historic Preservation Office
North Carolina Department of Natural and Cultural Resources
Physical/Delivery:109 East Jones Street, Room 258 (27601)
USPS/Mailing: 4617 Mail Service Center (27699-4617)
Raleigh, NC

Re: Montgomery County – Raw Water Pump Station Improvements Project

FY18 NC Drinking Water State Revolving Fund (DWSRF) /

State Reserve Program (DWSRP)
Project # H-SRP-D-18-0161 and WIF-1951

NEPA Environmental Review

Dear Ms. Gledhill-Earley:

On behalf of Montgomery County, please find the enclosed *Categorically Excluded NEPA Environmental Review* for the subject project for your review and comment. The County is in the process of submitting an engineering report to the North Carolina Department of Environmental Quality (DEQ) Division of Waster Infrastructure (DWI) – Drinking Water State Revolving Fund (DWSRF) ¹/ Drinking Water State Reserve Program (DWSRP) to secure funding in the total estimated project cost of approximately \$1.5M. Under U.S. Environmental Protection Agency (EPA), DWI, and *15A NCAC 01C .0408* requirements, the County is responsible for compiling the environmental documentation, including consultation related to historic properties. Historic properties include archeological sites, burial grounds, sacred landscapes or features, ceremonial areas, traditional cultural places and landscapes, plant and animal communities, and buildings and structures with significant tribal association.

The County is conducting a review of this project to comply with Section 106 of the National Historic Preservation Act and its implementing regulations 36 CFR Part 800. We would like to invite you to be a consulting party in this review to help identify historic properties in the project areas that may have archaeological significance or historic value, and if such properties exist, to help assess how the project might affect them. If the project activities might have an adverse effect, we would like to discuss possible ways to avoid, minimize or mitigate potential adverse effects.

Consistent with local plans, the proposed project is to make critical improvements at the County's Raw Water Pump Station (RWPS), located at the end of Nash Road, on the banks of the Pee Dee River, north of the Lake Tillery Dam, approx. 3 miles west of Mt. Gilead. The majority of work planned is inside the existing building: replacement of the existing 6 MGD raw water pumps, motors, controls, valves and appurtenances; sump

¹²⁰ North Boylan Avenue Raleigh, NC 27603

^{919.828.0531} Fax 919.834.3589

¹ http://portal.ncdenr.org/web/wi/dwsrf

pump improvements; sodium permanganate system installation to enhance treatment processes; and lower level access improvements. External site improvements include: replacement of the existing generator, relocation of the motor control center, various electrical improvements, and landscaping restoration improvements to address erosion issues.

As the RWPS was constructed in 1982 and pumps have reached the end of useful life, the *no action* alternative could result in station failure, creating public health hazards and lack of drinking water to several municipalities. Rehabilitation of the aging and deteriorating pumps and equipment is not feasible. Replacement of pumps is the preferred alternative. Detailed alternatives proposed are described in the enclosed environmental documentation.

Within 1 mile from the site are two points of interest that were surveyed and/or determined to be eligible as historic, related to the dam crossing and railroad crossing across the Pee Dee River. There are no other known historic properties or visually sensitive zones within 1 mile or adjacent to the proposed project area, and the proposed project activities are not expected to have any adverse impact on aesthetic quality of the area.

While there are federally listed endangered and threatened species in Montgomery County, according to U.S. Fish and Wildlife Service (USFWS), and within approx. 2 miles according to NC Natural Heritage Program (NHP) data, most of the species of concern indicated in the project's immediate vicinity depend on aquatic/wetland habitat. While the project site is adjacent to the Pee Dee River and contains a small portion of 100-year floodplain, ground disturbance is estimated to be minimal and to not take place in floodplain/wetland corridors.

For planning purposes, the total project area is proposed within previously disturbed & developed, existing, fenced perimeter of the RWPS site (up to approx. 1 acre). All proposed construction will take place within the same footprint of previously-disturbed areas & impervious surface. No new structures are proposed in floodplain, wetland, or farmland soil areas. Proper wetland delineations, buffers, permits, and sedimentation/erosion control requirements will be followed as applicable to protect species and wetlands in the vicinity.

Based on analysis of documentation gathered thus far, it is anticipated that no significant adverse effect on the environment will take place. However, regulatory agencies are being contacted for concurrence. **Therefore, the enclosed document is for scoping.** This letter is a formal request to determine what effect(s) the proposed project activities may have on operations, services, and resources provided and/or managed by your agency. If you determine the project might have an adverse effect, we would like to discuss possible ways to avoid, minimize, or mitigate potential adverse effects.

The Wooten Company is contracted to assist with the preparation of this environmental analysis. After completing your review, please return your response within 15-30 days to my attention at The Wooten Company, 120 N. Boylan Avenue, Raleigh, NC 27603 or by email at mchevalier@thewootencompany.com. You can alternatively contact:

120 North Boylan Avenue Raleigh, NC 27603

Chris Hildreth
Dir. of Development & Infrastructure
Montgomery County
724 Hydro Road
Mt. Gilead, NC 27306
PH: 910-576-4221
chris.hildreth@montgomerycountync.com
http://www.montgomerycountync.com/departments/public-utilities

Vincent Tomaino, PE DWSRF Branch Head NC DEQ- DWI Physical: 512 N. Salisbury St, 27604 Mailing: 1633 Mail Service Center, 27699-1633 Raleigh, NC PH: 919-707-9058

vincent.tomaino@ncdenr.gov

We value your assistance and look forward to consulting further on this project. Thank you for your comments regarding this project. If you have questions, please do not hesitate to contact me.

Sincerely,

Mullevaller

Monica Chevalier

Community Development Specialist

Cc: Chris Hildreth

Vincent Tomaino

Courtney Gamble, PE, The Wooten Company, cgamble@thewotencompany.com

Enclosures

120 North Boylan Avenue Raleigh, NC 27603

From: <u>Monica Chevalier</u>

To: "Environmental.Review@ncdcr.gov"
Cc: Courtney Gamble; Kevin Wienhold

Subject: Montgomery County Raw Water PS DWSRF Project

Date: Tuesday, November 13, 2018 5:20:00 PM

Attachments: Appx D 04a- NCSHPO 20181113.pdf

Appx D 04a- NCSHPO 20181113.pdf Montgomery County RWPS CE Enviro 20181113.pdf

Good Afternoon Renee- I hope you are well!!

I am contacting you on behalf of Montgomery County for a Raw Water Pump Station (RWPS) Improvements Project.

The County is in the process of finalizing an engineering report to secure approx. \$1.5M of federal loan funds. The County is conducting a categorically excluded NEPA environmental review of the project to comply with EPA regulations, and your review is needed for historical compliance for Section 106 of the National Historic Preservation Act and its implementing regulations 36 CFR Part 800. The project consists of critical improvements at the County's RWPS, located along the Pee Dee River near Lake Tillery Dam.

- Improvements inside the existing building include: replacement of the existing 6 MGD raw water pumps, motors, controls, valves and appurtenances; sump pump improvements; sodium permanganate system installation to enhance treatment processes; and lower level access improvements.
- External site improvements include: replacement of the existing generator, relocation of the motor control center, various electrical improvements, and landscaping restoration improvements to address erosion issues.

For planning purposes, potential ground disturbance is up to approx. 1 acre, within the previously disturbed and developed RWPS site, and within the fenced perimeter. While some areas are located in floodplain areas/farmland soils, and adjacent to wetland, there is no proposed filling, modification, or permanent disturbance to these areas. All proposed construction will take place within the same footprint of previously-disturbed built-up areas and/or impervious surface. Within 1 mile from the site are two points of interest that were surveyed and/or determined to be eligible as historic, related to the dam crossing and railroad crossing across the Pee Dee River. Based on the NC SHPO GIS mapper, there are no other known historic properties or visually sensitive zones within 1 mile or adjacent to the proposed project area.

This is notification of the County's decision-making process in evaluating project alternatives and anticipated environmental impacts, which are described in the attached environmental documentation. A hardcopy is forthcoming in the mail if you have any issues.

Based on analysis of documentation gathered thus far, it is anticipated that no adverse effect will take place with the project. However, this is a formal request to determine what effect(s) the proposed project activities may have on operations, services, and resources provided and/or managed by your agency. If you determine the project might have an adverse effect, we would like to discuss possible ways to avoid, minimize, or mitigate potential adverse effects.

The Wooten Company is contracted to assist with the environmental review of this project. After completing your review, if at all possible, please return your response within 15-30 days to my attention or respond to this email. You can alternatively contact (see attached letter):

Chris Hildreth Vincent Tomaino, PE
Dir. of Development & Infrastructure DWSRF Branch Head

Montgomery County NC DEQ- DWI

724 Hydro Road *Physical*: 512 N. Salisbury St,

Mt. Gilead, NC 27306 27604

chris.hildreth@montgomerycountync.com Center, 27699-1633 http://www.montgomerycountync.com/departments/public-Raleigh, NC

<u>utilities</u> PH: 919-707-9058

vincent.tomaino@ncdenr.gov

If you have any questions or need any additional information, please don't hesitate to contact me.

Thank you and have a great day! Monica

Monica Chevalier

Community Development Specialist The Wooten Company 120 North Boylan Avenue Raleigh, NC 27603 P: 919.828.0531 F: 919.834.3589

www.thewootencompany.com

November 13, 2018

John Ellis U.S. Fish and Wildlife Service Raleigh Field Office 551F Pylon Drive PO Box 33726 Raleigh, NC 27606

Re: Montgomery County – Raw Water Pump Station Improvements Project

FY18 NC Drinking Water State Revolving Fund (DWSRF) /

State Reserve Program (DWSRP)
Project # H-SRP-D-18-0161 and WIF-1951

NEPA Environmental Review

Dear Mr. Ellis:

On behalf of Montgomery County, please find the enclosed *Categorically Excluded* NEPA Environmental Review for the subject project for your review and comment. The County is in the process of submitting an engineering report to the North Carolina Department of Environmental Quality (DEQ) Division of Waster Infrastructure (DWI) – Drinking Water State Revolving Fund (DWSRF) ¹/ Drinking Water State Reserve Program (DWSRP) to secure funding in the total estimated project cost of approximately \$1.5M. Under U.S. Environmental Protection Agency (EPA), DWI, and *15A NCAC 01C .0408* requirements, the County is responsible for compiling the environmental documentation, including consultations with local agencies.

Consistent with local plans, the proposed project is to make critical improvements at the County's Raw Water Pump Station (RWPS), located at the end of Nash Road, on the banks of the Pee Dee River, north of the Lake Tillery Dam, approx. 3 miles west of Mt. Gilead. The majority of work planned is inside the existing building: replacement of the existing 6 MGD raw water pumps, motors, controls, valves and appurtenances; sump pump improvements; sodium permanganate system installation to enhance treatment processes; and lower level access improvements. External site improvements include: replacement of the existing generator, relocation of the motor control center, various electrical improvements, and landscaping restoration improvements to address erosion issues.

As the RWPS was constructed in 1982 and pumps have reached the end of useful life, the *no action* alternative could result in station failure, creating public health hazards and lack of drinking water to several municipalities. Rehabilitation of the aging and deteriorating pumps and equipment is not feasible. Replacement of pumps is the preferred alternative. Detailed alternatives proposed are described in the enclosed environmental documentation.

120 North Boylan Avenue Raleigh, NC 27603

¹ http://portal.ncdenr.org/web/wi/dwsrf

Within 1 mile from the site are two points of interest that were surveyed and/or determined to be eligible as historic, related to the dam crossing and railroad crossing across the Pee Dee River. There are no other known historic properties or visually sensitive zones within 1 mile or adjacent to the proposed project area, and the proposed project activities are not expected to have any adverse impact on aesthetic quality of the area

While there are federally listed endangered and threatened species in Montgomery County, according to U.S. Fish and Wildlife Service (USFWS), and within approx. 2 miles according to NC Natural Heritage Program (NHP) data, most of the species of concern indicated in the project's immediate vicinity depend on aquatic/wetland habitat. While the project site is adjacent to the Pee Dee River and contains a small portion of 100-year floodplain, ground disturbance is estimated to be minimal and to not take place in floodplain/wetland corridors.

For planning purposes, the total project area is proposed within previously disturbed & developed, existing, fenced perimeter of the RWPS site (up to approx. 1 acre). All proposed construction will take place within the same footprint of previously-disturbed areas & impervious surface. No new structures are proposed in floodplain, wetland, or farmland soil areas. Proper wetland delineations, buffers, permits, and sedimentation/erosion control requirements will be followed as applicable to protect species and wetlands in the vicinity.

Based on analysis of documentation gathered thus far, it is anticipated that no significant adverse effect on the environment will take place. However, regulatory agencies are being contacted for concurrence. **Therefore, the enclosed document is for scoping.** This letter is a formal request to determine what effect(s) the proposed project activities may have on operations, services, and resources provided and/or managed by your agency. If you determine the project might have an adverse effect, we would like to discuss possible ways to avoid, minimize, or mitigate potential adverse effects.

The Wooten Company is contracted to assist with the preparation of this environmental analysis. After completing your review, please return your response within 15-30 days to my attention at The Wooten Company, 120 N. Boylan Avenue, Raleigh, NC 27603 or by email at mchevalier@thewootencompany.com. You can alternatively contact:

Chris Hildreth
Dir. of Development & Infrastructure
Montgomery County
724 Hydro Road
Mt. Gilead, NC 27306
PH: 910-576-4221
chris.hildreth@montgomerycountync.com
http://www.montgomerycountync.com/departments/public-utilities

120 North Boylan Avenue Raleigh, NC 27603

Vincent Tomaino, PE DWSRF Branch Head NC DEQ- DWI

Physical: 512 N. Salisbury St, 27604

Mailing: 1633 Mail Service Center, 27699-1633

Raleigh, NC PH: 919-707-9058

vincent.tomaino@ncdenr.gov

We value your assistance and look forward to consulting further on this project. Thank you for your comments regarding this project. If you have questions, please do not hesitate to contact me.

Sincerely,

Melhevalier

Monica Chevalier Community Development Specialist

Cc: Chris Hildreth

Vincent Tomaino

Courtney Gamble, PE, The Wooten Company, cgamble@thewotencompany.com

Enclosures

120 North Boylan Avenue Raleigh, NC 27603

From: Monica Chevalier

To: "Ellis, John"

Cc: <u>Courtney Gamble</u>; <u>Kevin Wienhold</u>

Subject: Montgomery County Raw Water PS DWSRF Project
Date: Tuesday, November 13, 2018 5:20:00 PM
Attachments: Appx D 05a- USFWS Ellis 20181113.pdf

Montgomery County RWPS CE Enviro 20181113.pdf

Good Afternoon John!

I am contacting you on behalf of Montgomery County for a Raw Water Pump Station (RWPS) Improvements Project.

The County is in the process of finalizing an engineering report to secure approx. \$1.5M of federal loan funds. The County is conducting a categorically excluded NEPA environmental review of the project to comply with EPA regulations, and your review is needed for compliance. The project consists of critical improvements at the County's RWPS, located along the Pee Dee River near Lake Tillery Dam.

- Improvements inside the existing building include: replacement of the existing 6 MGD raw water pumps, motors, controls, valves and appurtenances; sump pump improvements; sodium permanganate system installation to enhance treatment processes; and lower level access improvements.
- External site improvements include: replacement of the existing generator, relocation of the motor control center, various electrical improvements, and landscaping restoration improvements to address erosion issues.

For planning purposes, potential ground disturbance is up to approx. 1 acre, within the previously disturbed and developed RWPS site, and within the fenced perimeter. While some areas are located in floodplain areas/farmland soils, and adjacent to wetland, there is no proposed filling, modification, or permanent disturbance to these areas. All proposed construction will take place within the same footprint of previously-disturbed built-up areas and/or impervious surface.

This is notification of the County's decision-making process in evaluating project alternatives and anticipated environmental impacts, which are described in the attached environmental documentation. A hardcopy is forthcoming in the mail if you have any issues.

Based on analysis of documentation gathered thus far, it is anticipated that no adverse effect will take place with the project. However, this is a formal request to determine what effect(s) the proposed project activities may have on operations, services, and resources provided and/or managed by your agency. If you determine the project might have an adverse effect, we would like to discuss possible ways to avoid, minimize, or mitigate potential adverse effects.

The Wooten Company is contracted to assist with the environmental review of this project. After completing your review, if at all possible, please return your response within 15-30 days to my attention or respond to this email. You can alternatively contact (see attached letter):

Chris Hildreth

Dir. of Development & Infrastructure

Montgomery County

724 Hydro Road

Mt. Gilead, NC 27306

PH: 910-576-4221

chris.hildreth@montgomerycountync.com

http://www.montgomerycountync.com/departments/public-

utilities

Vincent Tomaino, PE DWSRF Branch Head

NC DEQ- DWI

Physical: 512 N. Salisbury St,

27604

Mailing: 1633 Mail Service

Center, 27699-1633

Raleigh, NC

PH: 919-707-9058

vincent.tomaino@ncdenr.gov

If you have any questions or need any additional information, please don't hesitate to contact me.

Thank you and have a great day! Monica

Monica Chevalier

Community Development Specialist The Wooten Company 120 North Boylan Avenue Raleigh, NC 27603 P: 919.828.0531 F: 919.834.3589

www.thewootencompany.com

November 13, 2018

Ross Sullivan Reg. Specialist-Montgomery County U.S. Army Corps of Engineers Raleigh Office 3331 Heritage Trade Drive, Suite 105 Wake Forest, North Carolina 27587

Re: Montgomery County – Raw Water Pump Station Improvements Project FY18 NC Drinking Water State Revolving Fund (DWSRF) /

State Reserve Program (DWSRP)
Project # H-SRP-D-18-0161 and WIF-1951

NEPA Environmental Review

Dear Mr. Sullivan:

On behalf of Montgomery County, please find the enclosed *Categorically Excluded NEPA Environmental Review* for the subject project for your review and comment. The County is in the process of submitting an engineering report to the North Carolina Department of Environmental Quality (DEQ) Division of Waster Infrastructure (DWI) – Drinking Water State Revolving Fund (DWSRF)¹/ Drinking Water State Reserve Program (DWSRP) to secure funding in the total estimated project cost of approximately \$1.5M. Under U.S. Environmental Protection Agency (EPA), DWI, and 15A NCAC 01C .0408 requirements, the County is responsible for compiling the environmental documentation, including consultations with local agencies.

Consistent with local plans, the proposed project is to make critical improvements at the County's Raw Water Pump Station (RWPS), located at the end of Nash Road, on the banks of the Pee Dee River, north of the Lake Tillery Dam, approx. 3 miles west of Mt. Gilead. The majority of work planned is inside the existing building: replacement of the existing 6 MGD raw water pumps, motors, controls, valves and appurtenances; sump pump improvements; sodium permanganate system installation to enhance treatment processes; and lower level access improvements. External site improvements include: replacement of the existing generator, relocation of the motor control center, various electrical improvements, and landscaping restoration improvements to address erosion issues.

As the RWPS was constructed in 1982 and pumps have reached the end of useful life, the *no action* alternative could result in station failure, creating public health hazards and lack of drinking water to several municipalities. Rehabilitation of the aging and deteriorating pumps and equipment is not feasible. Replacement of pumps is the preferred alternative. Detailed alternatives proposed are described in the enclosed environmental documentation.

120 North Boylan Avenue Raleigh, NC 27603

¹ http://portal.ncdenr.org/web/wi/dwsrf

Within 1 mile from the site are two points of interest that were surveyed and/or determined to be eligible as historic, related to the dam crossing and railroad crossing across the Pee Dee River. There are no other known historic properties or visually sensitive zones within 1 mile or adjacent to the proposed project area, and the proposed project activities are not expected to have any adverse impact on aesthetic quality of the area

While there are federally listed endangered and threatened species in Montgomery County, according to U.S. Fish and Wildlife Service (USFWS), and within approx. 2 miles according to NC Natural Heritage Program (NHP) data, most of the species of concern indicated in the project's immediate vicinity depend on aquatic/wetland habitat. While the project site is adjacent to the Pee Dee River and contains a small portion of 100-year floodplain, ground disturbance is estimated to be minimal and to not take place in floodplain/wetland corridors.

For planning purposes, the total project area is proposed within previously disturbed & developed, existing, fenced perimeter of the RWPS site (up to approx. 1 acre). All proposed construction will take place within the same footprint of previously-disturbed areas & impervious surface. No new structures are proposed in floodplain, wetland, or farmland soil areas. Proper wetland delineations, buffers, permits, and sedimentation/erosion control requirements will be followed as applicable to protect species and wetlands in the vicinity.

Based on analysis of documentation gathered thus far, it is anticipated that no significant adverse effect on the environment will take place. However, regulatory agencies are being contacted for concurrence. **Therefore, the enclosed document is for scoping.** This letter is a formal request to determine what effect(s) the proposed project activities may have on operations, services, and resources provided and/or managed by your agency. If you determine the project might have an adverse effect, we would like to discuss possible ways to avoid, minimize, or mitigate potential adverse effects.

The Wooten Company is contracted to assist with the preparation of this environmental analysis. After completing your review, please return your response within 15-30 days to my attention at The Wooten Company, 120 N. Boylan Avenue, Raleigh, NC 27603 or by email at mchevalier@thewootencompany.com. You can alternatively contact:

Chris Hildreth
Dir. of Development & Infrastructure
Montgomery County
724 Hydro Road
Mt. Gilead, NC 27306
PH: 910-576-4221
chris.hildreth@montgomerycountync.com
http://www.montgomerycountync.com/departments/public-utilities

120 North Boylan Avenue Raleigh, NC 27603

Vincent Tomaino, PE DWSRF Branch Head NC DEQ- DWI

Physical: 512 N. Salisbury St, 27604

Mailing: 1633 Mail Service Center, 27699-1633

Raleigh, NC PH: 919-707-9058

vincent.tomaino@ncdenr.gov

We value your assistance and look forward to consulting further on this project. Thank you for your comments regarding this project. If you have questions, please do not hesitate to contact me.

Sincerely,

Mchevalier

Monica Chevalier Community Development Specialist

Cc: Chris Hildreth

Vincent Tomaino

Courtney Gamble, PE, The Wooten Company, cgamble@thewotencompany.com

Enclosures

120 North Boylan Avenue Raleigh, NC 27603

From: <u>Monica Chevalier</u>

To: "roscoe.l.sullivan@usace.army.mil"
Cc: Courtney Gamble; Kevin Wienhold

Subject: Montgomery County Raw Water PS DWSRF Project

Date: Tuesday, November 13, 2018 5:20:00 PM

Attachments: Appx D 06a- USACE Sullivan 20181113.pdf

Montgomery County RWPS CE Enviro 20181113.pdf

Good Afternoon Mr. Sullivan!

I am contacting you on behalf of Montgomery County for a Raw Water Pump Station (RWPS) Improvements Project.

The County is in the process of finalizing an engineering report to secure approx. \$1.5M of federal loan funds. The County is conducting a categorically excluded NEPA environmental review of the project to comply with EPA regulations, and your review is needed for compliance. The project consists of critical improvements at the County's RWPS, located along the Pee Dee River near Lake Tillery Dam.

- Improvements inside the existing building include: replacement of the existing 6 MGD raw water pumps, motors, controls, valves and appurtenances; sump pump improvements; sodium permanganate system installation to enhance treatment processes; and lower level access improvements.
- External site improvements include: replacement of the existing generator, relocation of the motor control center, various electrical improvements, and landscaping restoration improvements to address erosion issues.

For planning purposes, potential ground disturbance is up to approx. 1 acre, within the previously disturbed and developed RWPS site, and within the fenced perimeter. While some areas are located in floodplain areas/farmland soils, and adjacent to wetland, there is no proposed filling, modification, or permanent disturbance to these areas. All proposed construction will take place within the same footprint of previously-disturbed built-up areas and/or impervious surface.

This is notification of the County's decision-making process in evaluating project alternatives and anticipated environmental impacts, which are described in the attached environmental documentation. A hardcopy is forthcoming in the mail if you have any issues.

Based on analysis of documentation gathered thus far, it is anticipated that no adverse effect will take place with the project. However, this is a formal request to determine what effect(s) the proposed project activities may have on operations, services, and resources provided and/or managed by your agency. If you determine the project might have an adverse effect, we would like to discuss possible ways to avoid, minimize, or mitigate potential adverse effects.

The Wooten Company is contracted to assist with the environmental review of this project. After completing your review, if at all possible, please return your response within 15-30 days to my attention or respond to this email. You can alternatively contact (see attached letter):

Chris Hildreth

Dir. of Development & Infrastructure

Montgomery County

724 Hydro Road

Mt. Gilead, NC 27306

PH: 910-576-4221

chris.hildreth@montgomerycountync.com

http://www.montgomerycountync.com/departments/public-

utilities

Vincent Tomaino, PE DWSRF Branch Head

NC DEQ- DWI

Physical: 512 N. Salisbury St,

27604

Mailing: 1633 Mail Service

Center, 27699-1633

Raleigh, NC

PH: 919-707-9058

vincent.tomaino@ncdenr.gov

If you have any questions or need any additional information, please don't hesitate to contact me.

Thank you and have a great day! Monica

Monica Chevalier

Community Development Specialist The Wooten Company 120 North Boylan Avenue Raleigh, NC 27603 P: 919.828.0531 F: 919.834.3589

www.thewootencompany.com

MONTGOMERY COUNTY, NORTH CAROLINA 2018 DWSRF RAW WATER PUMP STATION IMPROVEMENTS PROJECT

APPENDIX 5E

DWSRF CATEGORICAL EXCLUSION REQUEST FORM

Request for Categorical Exclusion from Substantive Environmental Review (CE)

Instructions:

- 1. Provide the WIF number for the project for which you are requesting consideration.
- 2. Fill out the Applicant's formal name. For a county authority, please specify which county. "County Water District VII" is not a complete name; "ABC County Water District VII" is a complete name.
- Check all applicable exclusions. Failure to check an applicable exclusion will result in the rejection of your request.
- 4. Either the "authorized representative" or the Professional Engineer must sign the form. If the Professional Engineer signs the form, the Professional Engineer must seal the form.
- 5. Submit as part of the ER/EID, following the "Factsheet: Instructions for Applicants Seeking a Federal Categorical Exclusion" available under this webpage: http://portal.ncdenr.org/web/wi/planning.

WIF No	o.:	1951					
Applicant:		Montgomery County					
Project Name:		Raw Water Pump Station Improvements					
Project Descrip		Replacement of 2 – 6 MGD raw water pump including motors, controls, piping, and appurtenances, replacement of a 300kW onsite generator, replacement and relocation of the station MCC inside the existing building, replacement of the sump pump and floats, installation of a sodium permanganate system, improve access to lower level of station, stabilize a steep bank a the station site, and various SCADA and electrical improvements at the existing facility.					
applical	ble general	oject described in the application for state-supplied financial assistance meets all of the criteria listed in <u>15A NCAC 01C</u> .0408 (1), and consists solely of activities exempted under the <u>15A NCAC 01C</u> .0408 (2) checked below:					
Please check <u>all</u> the exclusion(s) that apply: Potable water systems including the construction or rehabilitation of wells for water supply purposes associated groundwater withdrawals of less than 1,000,000 gallons per day where such withdrawals not expected to cause alterations in established land use patterns, or degradation of groundwater of surface water quality.							
	[15A NCA	<u>C 01C</u> .0408 (2)(c)].					
		er systems including the following:					
	Improvements to water treatment plants that involve less than 1,000,000 gallons per day added capacity and total design withdrawal less than one-fifth of the 7-day, 10-year low flow of the contributing stream;						
\boxtimes		AC 01C .0408 (2)(b)(i)] ments not intended to add capacity to the facility; [15A NCAC 01C .0408 (2)(b)(ii)]					
Installation of waterlines and appurtenances in existing rights-of-way for streets or utilities, or war and appurtenances less than five miles in length and having only directional bore stream crossin stream crossings; [NCGS. § 113A-12(1) & 15A NCAC 01C .0408 (2)(b)(iii)]							
		on of water tanks, or booster pumping or secondary or remote disinfection stations;					
	Dams less .0408 (2)(h	than 25 feet in height and having less than 50 acre-feet or storage capacity [15A NCAC 01C] (Notes: #1 Dam projects are ineligible for federally recognized CE. #2 Only off-stream raw rvoirs for pre-treatment purposes are eligible for SRF funding.)					

I further certify that the project does not have a significant direct, indirect, cumulative or secondary adverse environmental impact as described in <u>15A NCAC 01C</u> .0306, and that none of the following descriptions apply to the project:

- the proposed activity may have a potential for significant adverse effects on wetlands; surface waters such as
 rivers, streams and estuaries; parklands; game lands; prime agricultural or forest lands; or areas of local, state
 or federally recognized scenic, recreational, archaeological, ecological, scientific research or historical value,
 including secondary impacts; or would threaten a species identified on the Department of Interior's or the
 state's threatened and endangered species lists; [15A NCAC 01C .0306 (1)] or
- the proposed activity could cause changes in industrial, commercial, residential, agricultural, or silvicultural
 land use concentrations or distributions which would be expected to create adverse water quality, instream
 flow, air quality, or ground water impacts; or affect long-term recreational benefits, fish, wildlife, or their natural
 habitats; [15A NCAC 01C .0306 (2)] or
- the proposed activity has secondary impacts, or is part of cumulative impacts, not generally covered in the approval process for the state action, and that may result in a potential risk to human health or the environment; [15A NCAC 01C .0306 (3)].

Therefore, I believe our project is eligible for consideration for a CE from the State's environmental assessment review processes and request that the North Carolina Department of Environment and Natural Resources (DENR) concur with this determination.

I understand that DENR may determine that the proposed activity is of such an unusual nature or has such widespread implications that a concern for its environmental effects has been identified by DENR or expressed to DENR. I understand that, in this case, the activity may be ineligible for CE under 15A NCAC 01C .0306 (4).

DENR.	I understand that, in this case, the activity may be ineligible for CE under 15A NCAC 01C .0306 (4).
\boxtimes	We are applying for a Drinking Water State Revolving Fund (DWSRF) loan and include the required comment letters. OR
	We are not applying for the DWSRF.
	Courtney M. Gamble
	Authorized Representative or Engineer Printed Name
	mutra 11/29/18
	Authorized Representative or Engineer Signature & Date
	Project Engineer
	Authorized Representative or Engineer Title

	State Use Only (Review)
Reviewed by:	Date:
Departmental Approval:	Date:

APPENDIX 6

MONTGOMERY COUNTY PUBLIC UTILITIES

724 Hydro Road, Mt. Gilead, NC 27306 910.439.6197 444 North Main Street, Troy, NC 27371 910.572.1221 www.montgomerycountync.com

WATER & SEWER RATE SCHEDULE (eff. 07-01-2016)

TYPE OF SERVICE	USAGE (gal.)	RATE	TYPE OF RATE
Mater Decidential			
Water - Residential	0-10	ć12.00	minimum bill
base charge		\$12.00	flat rate
flat charge	11 - 1000	\$5.00	
low usage	1,001 - 2,000	\$4.00	per 1,000 gallons
medium usage	2,001 - 4,000	\$6.00	per 1,000 gallons
high usage	> 4,000	\$8.00	per 1,000 gallons
Water - Commercial			
base charge	0	\$38.00	flat rate
low usage	0 - 1,000,000	\$7.40	per 1,000 gallons
high usage	> 1,000,000	\$2.99	per 1,000 gallons
Water - Bulk			
governmental base charge ¹	3,900,000	\$11,661.00	flat rate
governmental	0 - 60,000,000	\$2.99	per 1,000 gallons
non-governmental	0 - 3,000,000	\$3.19	per 1,000 gallons
Sewer - Candor Area			
base charge	0 - 2,000	\$32.00	flat rate
usage	> 2,000	\$2.50	per 1,000 gallons
Sewer - Troy Area			
base charge	0 - 2,000	\$11.50	flat rate
usage	> 2,000	\$5.10	per 1,000 gallons
Sewer - Town of Mt. Gilead ²			
in-town - base charge	0 - 2,000	\$5.80	flat rate
in-town - usage	> 2,000	\$7.31	per 1,000 gallons
out-of-town - base charge	0 - 2,000	\$25.00	flat rate
out-of-town - usage	> 2,000	\$7.50	per 1,000 gallons

^{1.} governmental base charge is only applicable to out-of-county governmental purchasers

Note: *Red* type indicates a change from last fiscal year's rate schedule

^{2.} Mt. Gilead sewer rates are set by the Town. MCPU bills on behalf of the Town of Mt. Gilead

APPENDIX 7

PRELIMINARY OPINION OF PROBABLE CONSTRUCTION COST

Montgomery County - Raw Water Pump Station Improvements

Preferred Alternative - Alternative 1 - RWPS Improvements with 6 MGD Replacement Pumps

THE WOOTEN COMPANY 11/29/2018

ITEM			TOTAL	UNIT	Е	XTENDED
NO.	DESCRIPTION	UNITS	QUANTITY	COST		COST (1)
1	Mobilization (3% of Construction Cost)	LS	1	\$ 30,200	\$	30,200
2	6 MGD Pump Replacement	EA	2	\$ 90,000	\$	180,000
3	Piping, Valves, and Appurtenances	LS	1	\$ 115,000	\$	115,000
4	300kW Generator and ATS Replacement	EA	1	\$ 150,000	\$	150,000
5	MCC Replacement	EA	1	\$ 175,000	\$	175,000
6	SCADA Improvements	LS	1	\$ 75,000	\$	75,000
7	Sump Pump and Float Replacement	LS	1	\$ 5,000	\$	5,000
8	Sodium Permanganate System	LS	1	\$ 75,000	\$	75,000
9	Landscape Bank Stabilization	LS	1	\$ 50,000	\$	50,000
10	Lower Level Access Hatch	LS	1	\$ 20,000	\$	20,000
11	Electrical Improvements	LS	1	\$ 100,000	\$	100,000
12	Bypass Pumping ⁽²⁾	LS	1	\$ 45,000	\$	45,000
13	Erosion Control	LS	1	\$ 15,000	\$	15,000

CONSTRUCTION COST OPINION = \$ 1,035,200

> CONTINGENCY (10%) = \$ 103,500

ER/EID = \$15,000

DESIGN SERVICES = \$ 99,500

> PERMITTING = \$ 5,000

BIDDING & NEGOTIATION = \$ 5,500

CONSTRUCTION ADMINISTRATION (3) = \$ 36,000

CONSTRUCTION OBSERVATION (4) = \$ 48,000 10,000

GRANT ADMINISTRATION = \$

ALTERNATIVE 1 - OPINION OF PROBABLE COSTS = \$ 1,357,700

GRANT FEE (1.5%) = \$ 2,400

LOAN CLOSING COST (2%) = \$ 24,000

Alternative 1 - Estimated Funding Breakdown

Grant Share = \$ 157,650

Principal Forgiveness = \$ 521,200

Loan Share = \$ 678,850

Local Funds = \$ 26,400

Notes:

- (1) Rounded to the nearest \$100
- (2) Bypassing pumping estimated for 1 month
- (3) Assumes 180-Day Contract Period of Performance
- (4) Assumes 180-Day Contract Period of Performance with Part-Time Construction Observation

PRELIMINARY OPINION OF PROBABLE CONSTRUCTION COST

Montgomery County - Raw Water Pump Station Improvements Alternative 2 - RWPS Improvements with 4 MGD Replacement Pumps

THE WOOTEN COMPANY 11/29/2018

ITEM			TOTAL	UNIT	EXTENDED
NO.	DESCRIPTION	UNITS	QUANTITY	COST	COST (1)
1	Mobilization (3% of Construction Cost)	LS	1	\$ 29,700	\$ 29,700
2	4 MGD Pump Replacement	EA	2	\$ 82,000	\$ 164,000
3	Piping, Valves, and Appurtenances	LS	1	\$ 115,000	\$ 115,000
4	300kW Generator and ATS Replacement	EA	1	\$ 150,000	\$ 150,000
5	MCC Replacement	EA	1	\$ 175,000	\$ 175,000
6	SCADA Improvements	LS	1	\$ 75,000	\$ 75,000
7	Sump Pump and Float Replacement	LS	1	\$ 5,000	\$ 5,000
8	Sodium Permanganate System	LS	1	\$ 75,000	\$ 75,000
9	Landscape Bank Stabilization	LS	1	\$ 50,000	\$ 50,000
10	Lower Level Access Hatch	LS	1	\$ 20,000	\$ 20,000
11	Electrical Improvements	LS	1	\$ 100,000	\$ 100,000
12	Bypass Pumping ⁽²⁾	LS	1	\$ 45,000	\$ 45,000
13	Erosion Control	LS	1	\$ 15,000	\$ 15,000

CONSTRUCTION COST OPINION = S	\$1,	018,700
-------------------------------	------	---------

CONTINGENCY (10%) = \$ 101,900

ER/EID = \$ 15,000

DESIGN SERVICES = \$ 99,500

PERMITTING = \$ 5,000

BIDDING & NEGOTIATION = \$ 5,500

CONSTRUCTION ADMINISTRATION (3) = \$ 36,000

CONSTRUCTION OBSERVATION (4) = \$ 48,000

GRANT ADMINISTRATION = \$ 10,000

ALTERNATIVE 2 - OPINION OF PROBABLE COSTS = \$ 1,339,600

GRANT FEE (1.5%) = \$ 2,400

LOAN CLOSING COST (2%) = \$ 23,600

Alternative 2 - Estimated Funding Breakdown

Grant Share = \$ 157,650

Principal Forgiveness = \$ 512,150

Loan Share = \$ 669,800

Local Funds = \$ 26,000

Notes:

- (1) Rounded to the nearest \$100
- (2) Bypassing pumping estimated for 1 month
- (3) Assumes 180-Day Contract Period of Performance
- (4) Assumes 180-Day Contract Period of Performance with Part-Time Construction Observation

PRELIMINARY OPINION OF PROBABLE CONSTRUCTION COST

Montgomery County - Raw Water Pump Station Improvements

Alternative 3 - RWPS Improvements with 6 MGD Replacement Pumps and VFDs

THE WOOTEN COMPANY 11/29/2018

ITEM			TOTAL		UNIT		XTENDED
NO.	DESCRIPTION	UNITS	QUANTITY	COST		COST (1)	
1	Mobilization (3% of Construction Cost)	LS	1	\$	33,600	\$	33,600
2	6 MGD Pump Replacement	EA	2	\$	90,000	\$	180,000
3	Variable Frequency Drives	EA	2	\$	51,000	\$	102,000
4	Piping, Valves, and Appurtenances	LS	1	\$	115,000	\$	115,000
5	300kW Generator and ATS Replacement	EA	1	\$	150,000	\$	150,000
6	MCC Replacement	EA	1	\$	175,000	\$	175,000
7	SCADA Improvements	LS	1	\$	75,000	\$	75,000
8	Sump Pump and Float Replacement	LS	1	\$	5,000	\$	5,000
9	Sodium Permanganate System	LS	1	\$	75,000	\$	75,000
10	Landscape Bank Stabilization	LS	1	\$	50,000	\$	50,000
11	Lower Level Access Hatch	LS	1	\$	20,000	\$	20,000
12	5 Ton HVAC System	EA	1	\$	10,000	\$	10,000
13	Electrical Improvements	LS	1	\$	100,000	\$	100,000
14	Bypass Pumping ⁽²⁾	LS	1	\$	45,000	\$	45,000
15	Erosion Control	LS	1	\$	15,000	\$	15,000

CONSTRUCTION COST OPINION =	\$ 1,150,600

CONTINGENCY (10%) = \$ 115,100

ER/EID = \$ 15,000

10,000

DESIGN SERVICES = \$ 99,500

PERMITTING = \$ 5,000 BIDDING & NEGOTIATION = \$ 5,500

BIDDING & NEGOTIATION = \$ 5,500 CONSTRUCTION ADMINISTRATION $^{(3)}$ = \$ 36,000

CONSTRUCTION OBSERVATION (4) = \$ 48,000

GRANT ADMINISTRATION = \$

ALTERNATIVE 3 - OPINION OF PROBABLE COSTS = \$ 1,484,700

GRANT FEE (1.5%) = \$ 2,400

LOAN CLOSING COST (2%) = \$ 26,500

Alternative 3 - Estimated Funding Breakdown

Grant Share = \$ 157,650

Principal Forgiveness = \$ 584,700

Loan Share = \$ 742,350

Local Funds = \$ 28,900

Notes:

- (1) Rounded to the nearest \$100
- (2) Bypassing pumping estimated for 1 month
- (3) Assumes 180-Day Contract Period of Performance
- (4) Assumes 180-Day Contract Period of Performance with Part-Time Construction Observation