Traffic bottlenecks along the region's commuter corridors during

morning and afternoon commuting hours (from 7 am to 10 am , and 4 pm to 7 pm) based on the amount of extra "buffer" time needed to be on-time 95 percent of the time.

PM PEAK HOUR RELIABILITY

-Moderate Buffer Time (60 to 100%) $\mathbf{0}$ US 401 NB, between US 1 and 1 -540
\mathbf{Q} US 64 EB and WB, between Lake Pine Rd and US 1 - Mud 64 EB , between US 64 Husiness and US 264
© $1-40$ WB, between Six Forks Rd and Wade Ave
(150
© $1-540$ EB, between $1-40$ and Six Forks Rd
© US 1 (Capital Blvd) NB, between $1-540$ and
ONC 98 EB, between Coley Rd and NC 50
-High Buffer Time (100 to 200\%)
© $1-40$ EB, along the RTP and RDU airport are
©-50 EB, between US 6 Business and $1-87$
© US 1 SB, between $1-40$ and US 64
© US 70 WB, along the Brier Creek area west of $1-540$
High to Very High Buffer Time (100 to 350%)
High to Very High Buffer Time (100 to 350%)
(2)- -40 WB, along downtown Raligh, RDU arport, and RTP areas
(3)-40 WB, along the Garne area around the US 70 Bypass interch
(6) $1-40 \mathrm{WB}$, along the Garner area around the US 70 Bypass interch South Saunders Rd to US 70 Business
(9) $1-400$ EB, between $1-40$ US 1 and $1-87$

FORECASTED TRAFFIC

BASELINE
M $=$ BILITY

The Commuter Corridors Study was initiated in December of 2018 by the Capital Area Metropolitan Planning Organization (CAMPO), in cooperation with the North Carolina Department of Transportation (NCDOT). The purpose of the study was to understand the underlying causes of traffic congestion along major commuter corridors in the region, explore the emerging growth and mobility trends, and test hypothetical future scenarios in terms of their impacts on mobility, safety, accessibility, and the environment.

As can be seen in the forecast map shown on the other side, all interstates and highways in the region are projected to have some level of traffic congestion in the future. Traffic volumes are anticipated to exceed capacity for these roadways by year 2045. This congestion forecast is based on the region's growth projections of two million people, one million jobs, and nine million trips. These growth projections were adopted as part of the region's 2045 Metropolitan Transportation Plan (MTP). These commuter corridors serve as the economic backbone of the region as they connect the City of Raleigh's employment centers with the commercial centers, educational institutions, medical facilities, logistics centers, and suburban commun ties in Wake and several neighboring Counties (i.e., Durham, Chatham, Harnett, Johnston, Nash, Franklin, and Granville) as well as the Research Triangle Park (RTP), This observation led to the question:

Why is there so much red in the map despite approved plans ${ }^{1}$ for significant roadway and transit investments?
This led to the launch of the Commuter Corridors Study

STUDY PROCESS AND SCOPE

The study involved a consultant team from Baseline Mobility Group and Resource Systems Group, and a technical steering committee that consisted of several CAMPO member and partner agencies. The technical steering committee guided the development and analysis of future scenarios. This included a broad-based scenario planning approach where realistic as well as unrealistic/hypothetical scenarios could be tested.
The study area included four Interstates, seven U.S. Highways, and six N.C. highways for a total of 17 corridors, listed below.

- Interstates: I-40, I-440, I-87, I-540
- U.S. Highways: US 1 , US 1 Alt., US 64 Bus, US 70, US 70 Bus, US 401 - NC Highways: NC 55, NC 55 Bypass, NC 540, NC 50, NC 54, and NC 98

PERFORMANCE MEASURES FOR FUTURE SCENARIOS

positive change negative change neutral/mixed change

FUTURE LAND USE-TRANSPORTATION SCENARIOS

The six "hypothetical" future scenarios modeled and analyzed in the study are summarized below. These six scenarios were measured using a host of traffic congestion measures such as level of traffic saturation, travel speed, travel time reliability, and modal split between were also analyzed using benefit-cost measures to understand the net economic, social and environmental benefit of a scenario - see the table. More detailed information for each scenario is available at www.campo-nc.us; search "commuter corridors".
HWYX - Highway Mega Expansion: This scenario hypothetically assumed doubling of the number of General-Purpose lanes along congested commuter corridor segments in the CAMPO number of General-Purpose lanes along congested commuter corri
OUTCOME: This scenario was deemed unrealistic and infeasible due to huge costs and community impacts, so it was excluded from the list of final scenarios modeled.

TOLL3 - Congestion Pricing - Dynamic Tolling: This scenario was intended to capture the emerging trend of applying tolls to ease traffic congestion in urban areas. The study assumed dynamic pricing, meaning the price fluctuates in real-time, during peak periods along the region's freeway corridors. It was also assumed that the peak toll pricing is only applicable to Single-Occupant Vehicles (SOVs) and trucks, but not to High-Occupancy Vehicles (HOVs) and buses.
OUTCOME: This scenario was deemed feasible for some corridors such as I-40 and I-540 where we looked at tolling on managed lanes only, but was considered very difficult for the l-440 we looked at ere we looked at tolling all lanes of travel due to right-of-way restrictions and community impacts.
ETOD - Equitable Transit-Oriented Development: This scenario is a transit-emphasis scenario. It was assumed that more of the anticipated future growth can be redirected towards station areas through supportive zoning policies and other incentives. The study assumed 50 percent additional growth in affordable multi-family, office and retail uses within half-mile of each planned transit station in the region, and 100 percent increase in transit frequency for future transit routes in the region.
OUTCOME: This scenario was deemed realistic and feasible, and has the potential to curb future traffic congestion in the region.
RESY - Regional Resiliency: This scenario was intended to ilustrate the importance of resiliency planning for traffic disruptions due to extreme weather events. The study assumed 50 percent reduction in the number of available lanes at several commuter corridor segments that were deemed to be vulnerable to flooding in an extreme weather event.
OUTCOME: This scenario was deemed necessary for resiliency planning. Potential negative impacts could worsen if adequate roadway connectivity is not built into the commuter corridors.

CIG - Gig Economy of Mobile Workers: This scenario was intended to capture the
emerging socio-economic trend where an increasing number of people work from home due to the growth of mobile (telecommuting), part-time, and independent workers. Guided by national estimates, the study assumed 25 percent reduction in work-related commute trips for mediumicome and high-income households.
OUTCOME: This scenario was deemed realistic based on current trend. It has the potential to curb freeway traffic congestion during regular commuting hours, but may cause negative impacts to off-peak travel conditions or on local arterials.
MHUB - Smart Mobility Hubs: This scenario was intended to capture the new mobility trend of using shared ride services for first-mile and last-mile trips. The study identified 13 future mixed-use center locations around the edges of the region as hypothetical future smart mobility ubs. This scenario also assumed 50 percent adaitional growth in housenold, office and retai uses within one and one half-mile band of each of the identified mobility hubs, along with high frequency premium transit service during commuting hours
downtown Raleigh and the Research Triangle Park (RTP).
OUTCOME: This scenario was deemed realistic and feasible based on current trends, and has the potential to curb future traffic congestion in the region.

