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KEY PO INT S

l Tumor EBV status is
more strongly
associated with
distinct genetic and
etiological
mechanisms than
geographic origin.

l EBV-positive BL
genomes feature
fewer driver
mutations despite
their greater
mutational load that is
partly a result of
increased AICDA
activity.

Although generally curable with intensive chemotherapy in resource-rich settings, Burkitt
lymphoma (BL) remains a deadly disease in older patients and in sub-Saharan Africa.
Epstein-Barr virus (EBV) positivity is a feature in more than 90%of cases in malaria-endemic
regions, and up to 30% elsewhere. However, the molecular features of BL have not been
comprehensively evaluated when taking into account tumor EBV status or geographic
origin. Through an integrative analysis of whole-genome and transcriptome data, we show
a striking genome-wide increase in aberrant somatic hypermutation in EBV-positive tu-
mors, supporting a link between EBV and activation-induced cytidine deaminase (AICDA)
activity. In addition to identifying novel candidate BL genes such as SIN3A, USP7, and
CHD8, we demonstrate that EBV-positive tumors had significantly fewer driver mutations,
especially among genes with roles in apoptosis. We also found immunoglobulin variable
region genes that were disproportionally used to encode clonal B-cell receptors (BCRs) in
the tumors. These include IGHV4-34, known to produce autoreactive antibodies, and
IGKV3-20, a feature described in other B-cell malignancies but not yet in BL. Our results
suggest that tumor EBV status defines a specific BL phenotype irrespective of geographic
origin, with particular molecular properties and distinct pathogenic mechanisms. The novel

mutation patterns identified here imply rational use of DNA-damaging chemotherapy in some patients with BL and
targeted agents such as the CDK4/6 inhibitor palbociclib in others, whereas the importance of BCR signaling in BL
strengthens the potential benefit of inhibitors for PI3K, Syk, and Src family kinases among these patients. (Blood. 2019;
133(12):1313-1324)
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Introduction
Burkitt lymphoma (BL) is an aggressive B-cell non-Hodgkin
lymphoma first described in Africa by Denis Burkitt in 1958.1

The geographic variability of BL incidence has prompted in-
vestigation into environmental factors including viruses and
parasites.2,3 Cases arising in malaria-endemic regions, where the
disease is most common, constitute the clinical variant known as
endemic BL (eBL). Clinically, these cases most commonly pre-
sent with large tumors at the head and the abdominal cavity. The
cells of nearly all eBL tumors are infected by the Epstein-Barr
virus (EBV), a recognized carcinogen for BL, the mechanism of
which has not been fully elucidated.3,4 BL tumors tend to dra-
matically respond to intensive chemotherapy and are consid-
ered curable for children in countries in which proper supportive
care is readily available.5 However, eBL remains fatal for the
majority of children in sub-Saharan Africa for many reasons,
including diagnosis at an advanced stage, healthcare delivery
systems lacking capacity to support intensive chemotherapeutic
regimens, and poverty/malnutrition.3,6-8 Outside of malaria-
endemic regions, BL cases occur at a 10-fold lower incidence,
termed sporadic BL (sBL), and concurrent EBV presence is much
lower (10%-30%).9 The clinical manifestations of sBL differ from
eBL, with abdominal and thoracic presentations most com-
mon and large facial tumors exceedingly rare. Until recently,
treating adult and elderly patients was a challenge and was as-
sociated with high mortality,5 although current clinical trials are
more promising.10 Thus, there is a continued need for better
understanding the genetic and molecular features of BL to facil-
itate the discovery of more effective treatments with lower toxicity.

BL has a characteristic chromosomal rearrangement that places
the MYC proto-oncogene next to an immunoglobulin (IG) en-
hancer, resulting in constitutive MYC expression.11,12 However,
additional genetic or epigenetic alterations are required to co-
operate with increased MYC activity for BL to develop.13 Recent
studies using DNA or RNA sequencing (RNA-seq) or both have
implicated several genes and pathways as drivers of BL, in-
cluding B-cell receptor (BCR) and PI3K-AKT signaling (TCF3, ID3,
PTEN), apoptosis (TP53), cell cycle regulation (CCND3), epige-
netic regulation (ARID1A, SMARCA4, KMT2D), and G protein-
coupled receptor signaling (GNA13, RHOA, P2RY8).14-19 RNA-seq
data have also began shedding light onmutational differences
of known BL genes in eBL and sBL17 and in BL stratified on
tumor EBV status.18 However, these comparisons have thus far
been limited by access to small patient cohorts, underrep-
resentation of African cases, and differences in experimental
protocols.

Here, we present an integrative genomic and transcriptomic
characterization of 106 HIV-negative pediatric BL cases by
leveraging the largest yet multidimensional sequencing data set
from samples from patients with BL. These data allowed for a
detailed molecular and genetic comparison of EBV-positive and
EBV-negative eBL and sBL tumors, revealing important patho-
genic differences that indicate potential roles of EBV in Burkitt
lymphomagenesis. Our findings suggest that tumor EBV status
stratifies patients into more clinically relevant subgroups than
geographic origin of the cases. Notably, we observed higher
AICDA expression, a gene encoding for activation-induced
cytidine deaminase, and concomitant aberrant somatic hyper-
mutation (SHM) among EBV-positive tumors. In addition to

identifying novel candidate BL genes, we show strikingly fewer
putative driver mutations in EBV-positive tumors, a signal that
was highly significant for mutations in genes with roles in apo-
ptosis. These results clarify the molecular pathways and driver
mutations relevant to EBV-positive and EBV-negative BLs and
demonstrate that tumor EBV status identifies a distinct BL phe-
notype in both eBL and sBL, and may be an important consid-
eration for BL therapy.

Materials and methods
Case accrual and sequencing
Endemic and sporadic cases were accrued from Uganda and the
United States (termed Burkitt Lymphoma Genome Sequencing
Project [BLGSP] cases), respectively, and tumor samples un-
derwent stringent pathology consensus review. We subjected
tumor and matched constitutive (normal) DNA from 91 cases to
whole-genome sequencing (WGS; mean depth, 82-fold and 41-
fold, respectively). We performed strand-specific ribo-depleted
RNA sequencing (RNA-seq) and miRNA sequencing (miRNA-
seq) on the tumor samples and applied the same protocol to
flow-sorted centroblasts and centrocytes from 6 pediatric tonsil
donors. We reanalyzed the paired tumor-normal WGS data
(mean depth, 40-fold) from 15 sBLs that had been previously
investigated by the International Cancer Genome Consortium
(ICGC) Molecular Mechanisms in Malignant Lymphoma by Se-
quencing project.15,20 Because of the lower sequencing coverage,
we omitted the ICGC cases for any analyses that would be
susceptible to varying sensitivity for mutation calls. We also
performed targeted sequencing of recurrently mutated regions
on tumor and matched constitutive DNA (mean depth, 243-fold)
in a separate validation cohort of 29 cases. Of these validation
tumors, 26 also underwent RNA-seq. See the supplemental
Methods, available on the Blood Web site, for more details.

Data analysis
WGS and RNA-seq reads were aligned to a version of the human
reference genome (GRCh38) that included the EBV genome
using BWA-MEM21 and the JAGuaR pipeline,22 respectively.
Tumor EBV status was inferred from the fraction of EBV reads in
the WGS data and the number of Epstein–Barr virus-encoded
small RNAs (EBER) reads in the RNA-seq data (supplemental
Figure 1). The inferred EBV status was concordant with available
results from EBER in situ hybridization (N5 5) or EBV polymerase
chain reaction (N 5 1). We performed somatic variant calling on
tumor-normal pairs to detect simple somatic mutations (SSMs;
single nucleotide variants and small insertions/deletions; ie,
,50 bp) using Strelka,23 copy number variations using Sequenza,24

and structural variations using Manta.25 Genes were considered
significantly mutated by nonsynonymous SSMs if they were called
by 2 or more of the following methods: MutSigCV,26 Onco-
driveFM,27 OncodriveFML,28 and OncodriveCLUST.29 Non-
coding mutation peaks were detected using the Rainstorm
and Doppler algorithms.30 De novo mutational signatures
were identified using the previously described framework by
Alexandrov et al.31 Gene expression was quantified using
Salmon from the RNA-seq data (Gencode release 25),32 and
miRNA expression was profiled using the methodology
employed by The Cancer Genome Atlas project (miRBase
release 21).33 Clonal BCRs were identified using MiXCR.34,35 See
the supplemental Methods for more details.
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Results
Clinical and molecular characteristics of the
discovery and validation cases

The clinical and molecular characteristics of the discovery
(N 5 106) and validation (N 5 29) cohorts are summarized in
Table 1 and supplemental Table 1, respectively. The study of the
relationship between disease biology and clinical variant status
and tumor EBV status was enabled by the inclusion of 8 EBV-
negative eBLs and 4 EBV-positive sBLs, termed “discordant” BL
cases. Patient metadata are presented in supplemental Table 2,
and mutation data are included in supplemental Tables 3-6. We
found IG-MYC translocations in all but 2 of the discovery cases,
with 85 (82%) cases involving IGH and the remaining 19 (18%)
cases associated with IGL or IGK (Figure 1A). The other 2 dis-
covery cases featured more complex MYC rearrangements in-
volving BCL6 in an sBL case (BLGSP-71-19-00123) and IGH via
an intergenic region on chromosome 17 in an eBL case (BLGSP-
71-06-00277). We observed telomeric gains of chromosome 8 in
7 (6.6%) tumors, indicative of unbalanced IG-MYC translocations
that may further promote MYC expression.

Nonuniform V gene usage for encoding clonal BCRs
in BL
Given the reliance on a functional BCR in BL,14 we sought to
characterize the heavy and light chain gene usage of the ex-
pressed BCR. We identified clonal IG gene rearrangements for
the heavy and light chains in 96 (82%) and 104 (90%) out of
117 cases, respectively (supplemental Figure 2A-B). Tumors in
which clonal rearrangements were undetectable had fewer reads
attributable to IG genes (P 5 1.2 3 1027 and 5.7 3 1024, re-
spectively, Mann-Whitney U test), which limited the ability to
detect rearrangements (supplemental Figure 2C). Among clonal
rearrangements, IG variable region (V) gene usage was not
uniform in BL, exhibiting a pattern comparable to diffuse large
B-cell lymphoma (DLBCL) tumors (N 5 323; Figure 1B).36 In BL,
the most recurrently used heavy chain V genes were IGHV4-34
(16%), IGHV3-30 (10%), and IGHV3-7 (7.3%). The most fre-
quently used light chain V gene was IGKV3-20 (20%). We found
no difference in individual V gene usage based on clinical variant
status or tumor EBV status, nor between BL and DLBCL (Q. 0.1,
Fisher’s exact test). These results are consistent with the
established notion that BL relies on BCR activity for promoting

Table 1. Summary of clinical and molecular characteristics of the discovery cohort

Variable and level BLGSP (n 5 91) ICGC (n 5 15) Total (n 5 106)

Clinical variant
Endemic BL 74 (81%) 0 (0%) 74 (70%)
Sporadic BL 17 (19%) 15 (100%) 32 (30%)

EBV status
EBV-positive 71 (78%) 0 (0%) 71 (67%)
EBV-negative 20 (22%) 15 (100%) 35 (33%)

Age group, y
0-5 21 (23%) 6 (40%) 27 (25%)
6-10 50 (55%) 5 (33%) 55 (52%)
11-15 18 (20%) 2 (13%) 20 (19%)
16-20 2 (2%) 2 (13%) 4 (4%)

Tumor biopsy
FF 88 (97%) 15 (100%) 103 (97%)
FFPE 3 (3%) 0 (0%) 3 (3%)

IG-MYC translocations
IGH-MYC 74 (81%) 11 (73%) 85 (80%)
IGL-MYC 8 (9%) 3 (20%) 11 (10%)
IGK-MYC 7 (8%) 1 (7%) 8 (8%)
Other 2 (2%) 0 (0%) 2 (2%)

Expressed IG isotype
IgM 63 (69%) 0 (0%) 63 (59%)
IgG 11 (12%) 0 (0%) 11 (10%)
Undetectable 17 (19%) 15 (100%) 32 (30%)

Anatomic site
Head-only disease 29 (32%) 0 (0%) 29 (27%)
Intra-abdominal disease 16 (18%) 0 (0%) 16 (15%)
Disseminated disease (no BM/CNS involvement) 36 (40%) 0 (0%) 36 (34%)
Disseminated disease (BM/CNS involvement) 8 (9%) 0 (0%) 8 (8%)
Unknown 2 (2%) 15 (100%) 17 (16%)

All cases were HIV-negative. Cases from the BLGSP and the ICGC project are shown separately. The IG isotype was not determined for the ICGC cases because the ICGC tumor RNA-seq data
were not analyzed. BM, bone marrow; CNS, central nervous system; FF, fresh frozen tissue; FFPE, formalin-fixed paraffin-embedded tissue.
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PI3K signaling14 and raises the possibility for positive selection of
potentially autoreactive or antigen-driven BCRs.

Deregulated AICDA activity in EBV-positive BL
We identified 70 discrete genomic regions enriched for non-
coding mutations, referred to here as “peaks,” with a median
size of 1539 bp (supplemental Figure 3A; supplemental Table 7).
Of the 38 peaks mutated in 15 or more patients, 17 overlapped
one of the 3 IG loci and were considered separately. Of the
remaining commonly mutated peaks, 18 were within 3 kbp of a
transcription start site (TSS) and were thus named TSS-proximal,
whereas the other 3 were considered TSS-distal (supplemental
Figure 3B). Most of these peaks were more commonly mu-
tated in endemic or EBV-positive cases (Q, 0.1, Fisher’s exact
test; Figure 2A; supplemental Figure 3C). In addition, most
TSS-proximal peaks are associated with genes known to be
affected by aberrant SHM (aSHM).37 Given that most peaks
are TSS-proximal and associated with genes targeted by
aSHM, we hypothesized that these regions are mutated by
AICDA.

Consistent with AICDA activity, we found an enrichment of
mutations affecting AICDA recognition sites (RGYW) in 61%
of peaks (Q, 0.1, binomial exact test; supplemental Figure 3D).
Given that active transcription is known to facilitate AICDA-
mediated mutation,38,39 we explored the expression of genes
associated with TSS-proximal peaks (ie, “peak target genes”).
Peak target genes were among the most highly expressed
genes in all tumors, including those cases lacking mutations in
these regions (median TPM expression percentile 5 98.3;
supplemental Figure 3E). We also did not find a consistent as-
sociation between the presence of mutations in a peak and
higher target gene expression (supplemental Figure 3F). Overall,
AICDA expression correlated with the number of mutations in
peaks in any given genome (P5 2.33 1028, Pearson correlation
test; supplemental Figure 3G). Possibly explaining variability in
mutation at these aSHM targets, AICDA was more highly
expressed among eBLs (P 5 4.9 3 1027, Mann-Whitney U test)
and in EBV-positive tumors (P5 4.83 1029), regardless of clinical
variant status (Figure 2B; supplemental Figure 3H). Linear re-
gression confirmed a stronger association of AICDA expression
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with tumor EBV status than with clinical variant status (Figure 2C).
Altogether, these findings demonstrate that discrete genomic
regions in BL accumulate noncoding mutations, and most ap-
pear to be the consequence of AICDA-mediated aSHM in EBV-
positive tumors.

Although several noncoding mutation peaks identified here
overlap known targets of aSHM, many of these regions or genes
are not known to be targeted by aSHM in BL. Notably, we found

a peak 54 kbp downstream of MYC that overlaps the promoter
and first intron of PVT1, a locus that produces a long noncoding
RNA and a known target of MYC (Figure 3A).40 PVT1 promoter
mutations occurred in 17% of 106 BL cases compared with only
4.6% in a cohort of 153 DLBCL cases.30 These mutations were
associated with the presence of EBV (P 5 .031, Fisher’s exact
test), but not with clinical variant status (P 5 .26). Another non-
coding mutation peak affected a distal enhancer for PAX5, a
transcription factor with an important role in B-cell differentiation
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(Figure 3B). Mutations in this enhancer were found in 11% of 150
chronic lymphocytic leukemia cases,41 whereas we observe a
higher mutation incidence (20%) in 106 BL genomes, which is
comparable to that observed in 153 DLBCL genomes (23%).30

Guanine-cytosine pairs in AICDA recognition sites (RGYW) were
mutated at a higher than expected rate in the PAX5 enhancer and
PVT1 promoter mutation peaks, reminiscent of aSHM (Q5 0.0045
and 0.056, respectively, binomial exact test). These variants

raise the possibility that AICDA is contributing to BL by in-
troducing noncoding mutations in regulatory regions.

Novel patterns of nonsynonymous mutations in BL
Patterns of nonsynonymous mutations that depart from neutral
selection often affect genes with important tumorigenic roles.
We searched for these patterns among SSMs in our discovery
cohort (N 5 106) and identified 23 significantly mutated genes
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(Figure 4; supplemental Figure 5; supplemental Table 8). Several
known BL genes were classified as significantly mutated, in-
cluding some recently discovered candidate BL genes such as
TFAP418 and KMT2D,19 whereas other previously reported

candidate BL genes such as CCNF and MSH6 lacked non-
synonymous SSMs in our cohort.17,18 We also identified genes
not previously described as recurrently mutated in BL; namely,
SIN3A, USP7, HIST1H1E, CHD8, and RFX7. This highlights an
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emerging understanding of the genetic underpinnings of this
disease.

For a comprehensive view of potential driver mutations in BL, we
considered all mutation types, including structural and copy
number variations, affecting BL-associated genes (BLGs; sup-
plemental Figure 6; supplemental Table 9). Here, we define
BLGs as any gene deemed significantly mutated in our study or
previously described as recurrently mutated in BL altered in at
least 5 patients in our discovery cohort (Figure 4). Notably, we
found an enrichment of variants affecting AICDA recognition
sites in HIST1H1E, ID3, MYC, BCL7A, and ETS1, whereas
GNAI2 and RHOA showed the opposite trend (Q , 0.1,
binomial exact test; supplemental Figure 4A). The lack of
putative AICDA-mediated mutations in GNAI2 and RHOA is
consistent with the observed constraints on which codons are

mutated in these genes (supplemental Figure 5). In fact, we
extended the mutation pattern in GNAI2 to include the re-
current in-frame deletion of codon K272 (supplemental Figure
5). We also observed focal deletions or inversions affecting
DDX3X in 6 (5.7%) cases and splicing branch point mutations
in 3 (2.8%) additional cases, all predicted to disrupt the
reading frame. Overall, the size and breadth of our WGS data
has allowed a more detailed description of the mutational
landscape of BL.

Protein-altering mutations associated with tumor
EBV status
We next identified whether mutations in individual BLGs or
biologically related gene sets (ie, pathways) more strongly as-
sociate with clinical variant status or tumor EBV status (supple-
mental Table 10) and consistently found greater contrast on the
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basis of EBV status (supplemental Figure 4C). EBV-negative
tumors, but not sBL tumors, more frequently had mutations in
TP53 (Q5 0.0044, Fisher’s exact test), a difference that became
more striking when considering a group comprising all BLGs with
roles in apoptosis (Q 5 0.00024). We also found differences in
the mutation prevalence of SMARCA4 and CCND3 (Q , 0.1),
but were unable to confidently resolve whether these relate to
tumor EBV status or geographic origin. In contrast to a pre-
vious report,18 we did not identify any differentially mutated
genes between tumors infected by EBV type 1 and EBV type 2
(Q . 0.1). To confirm our findings, we compared tumor EBV
status and clinical variant status as predictors of mutation
status for differentially mutated genes and pathways, which
were determined without including the 12 discordant cases
(supplemental Table 11). Among the genes/pathways that
were mutated in at least 10% of the cases, SMARCA4, apo-
ptosis, CCND3, and TP53 were differentially mutated (Q , 0.1,
Fisher’s exact test). Tumor EBV status significantly out-
performed clinical variant status in predicting the muta-
tion status of the apoptosis pathway in the discordant cases
(P 5 .0094, McNemar’s test). For the remaining genes, it
remained inconclusive as to whether their mutation status in
the discordant cases were significantly better predicted by
EBV status or clinical variant status (P . .05). Together, these
findings demonstrate that EBV-positive tumors are genetically
defined by a paucity of mutations affecting apoptotic genes,
supporting the long-standing hypothesis that EBV abrogates
apoptosis in BL tumors.

Distinct driver mutation burden and genome-wide
mutational signatures in EBV-positive cases
The total mutation load per genome was significantly higher in
endemic or EBV-positive cases, even when mutations within and
outside mutation peaks were considered separately (Q , 0.1,
Mann-Whitney U test; Figure 5A). Similarly, the burden was
higher for nonsynonymous mutations in endemic or EBV-
positive cases for all protein-coding genes. In contrast,
EBV-positive cases had significantly fewer mutated BLGs per
tumor (P 5 .00053, Mann-Whitney U test), but there was no
significant difference when eBL was compared with sBL (P 5 .13;
Figure 5B). This difference can be attributed to the presence of
EBV, strongly suggests an elevated accumulation of driver mu-
tations in EBV-negative BLs, and further corroborates the role of
EBV infection in promoting tumorigenesis.

To investigate the underlying mutational processes shaping BL
genomes, we inferred mutational signatures de novo,42 which
yielded 4 signatures (supplemental Figure 7A,F). Each of these
BL signatures was then paired with a COSMIC reference sig-
nature based on similarity to infer putative etiologies (supple-
mental Figure 7E).42,43 BL signatures A, B, C, and D were
respectively paired with COSMIC signatures 5 (associated with
age), 17 (unknown etiology), 15 (associated with defective DNA
mismatch repair [MMR]), and 9 (associated with AICDA and po-
lymerase h activity). The age-related BL signature A was corre-
lated with age at diagnosis (Q5 5.53 1029, Pearson correlation test),
and the AICDA-related BL signature D was strongly correlated
with AICDA expression (Q 5 1.7 3 10213). These correlations
further lend credence to the robustness of our 4-signature so-
lution, which was derived directly from the data (supplemental
Figure 7B-D).

For each sample, the estimated number of mutations contrib-
uted by each signature was calculated (Figure 5C). In comparing
EBV-positive and EBV-negative BL genomes, we found no
difference in the age-related BL signature A. We found a signifi-
cantly higher representation of BL signatures B, C, and D in EBV-
positive or endemic tumors (Q , 0.1, Mann-Whitney U test). To
isolate the source of this variation, we performed linear re-
gression to describe the relationship between the estimated
number of mutations per signature and potential covariates
(supplemental Table 12). BL signature B, whose etiology remains
unknown, did not associate with any of the covariates we con-
sidered (P . .05). In contrast, BL signature C was found to be
significantly associated with tumor EBV status (P 5 .038), but not
clinical variant status (P 5 .23), suggesting a link between EBV
and DNA MMR. Last, consistent with an etiological link with
AICDA, BL signature D was strictly associated with AICDA ex-
pression (P 5 .00098). Notably, neither BL signature B nor C
correlated with AICDA expression, indicating that these do not
have a significant contribution from AICDA (P 5 .18 and .34,
respectively). In summary, we may partly attribute the increased
mutational load in EBV-positive or endemic cases to defective
DNA MMR and increased AICDA activity.

Discussion
We found a higher genome-wide mutation burden in EBV-
positive or endemic cases (Figure 5A), and 3 de novo muta-
tional signatures that can account for this difference (Figure 5C).
BL signature B is mainly characterized by NTT . NGT trans-
versions, reminiscent of COSMIC signature 17, which has no
proposed etiology, although it has been observed in B-cell
lymphomas. We found theMMR-associated BL signature C to be
more strongly associated with tumor EBV status than geographic
origin (supplemental Table 12). However, little is known about a
functional link between EBV and the MMR pathway. In one study,
EBV reportedly caused the loss of H3K4 tri-methylation of DNA
repair signaling genes, among other targets, in nasopharyngeal
epithelial cells.44 DNA methylation assays comparing EBV-
positive and EBV-negative tumors may confirm whether this
mechanism is also active in BL. In addition to potential defects in
MMR, BL signature D revealed differential AICDA-mediated
mutagenesis (supplemental Figure 7D; supplemental Table 12).
Aberrant AICDA activity is thought to promote the double-strand
breaks that lead to IG-MYC translocations and introduce muta-
tions in some BL-associated genes such as ID3.15,45-49 Hence, our
findings indicate a mutagenic role for EBV in promoting the ac-
cumulation of potential driver mutations in BL.

Despite a greater mutation burden, we found fewer putative
driver mutations in EBV-positive BLs (Figure 5B). We can partially
attribute this difference to a lack of mutations in SMARCA4
and CCND3 among EBV-positive or endemic cases (Figure 4),
which has been reported previously.17,18 We also report a striking
disparity in the prevalence of mutations affecting apoptotic
genes that is strictly associated with tumor EBV status and not
geographic origin. This novel finding may owe in part to our
identification of USP7 as being recurrently mutated in BL. USP7
encodes a deubiquitinase that counteracts MDM2-mediated
ubiquitination and degradation of TP5350 and, despite its sta-
tus as an essential gene,51 has the mutational pattern of a tumor
suppressor in BL. The interaction between TP53 and USP7 can
be disrupted by the protein encoded by EBNA1,52 the only
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consistently expressed EBV protein in BL.3 We also cannot ex-
clude the potential role of other EBV latency or lytic genes in
disrupting apoptosis in vivo. Regardless of themechanism, these
findings are consistent with EBV suppressing apoptosis in BL
cells, thereby alleviating the selective pressure for mutations
affecting genes in this process.53

Our results extend the emerging theme of chromatin modifiers
as recurrently mutated in B-cell non-Hodgkin lymphomas in-
cluding BL.16,54 Notably, SIN3A, a novel candidate BL gene,
mediates repression of MYC target genes through histone
deacetylase complexes.55 The protein encoded byCHD8 can act
as a repressor of transcription through chromatin regulation by
recruiting histone H1 to target genes.56 With the exception of
MYC, the SWI/SNF complex is the most commonly mutated
group of functionally related genes in BL (Figure 4), and the only
pathway with mutually exclusive mutations (Q 5 2.3 3 1025;
supplemental Figure 4B). Mutual exclusivity between muta-
tions affecting ARID1A and SMARCA4 supports the notion that
these mutations are functionally redundant. Overall, mutations
affecting these genes were uniformly observed between EBV-
positive and EBV-negative cases, despite a significant enrich-
ment of SMARCA4 mutations among the latter. The functional
consequences of these mutations remain elusive and, given their
high incidence across pediatric BL, warrant further investigation.

To fully leverage our data, we also searched for discrete regions
enriched in noncoding mutations (Figure 2A). Most peaks of
noncoding mutations were associated with known targets of
SHM, andmany were almost exclusively mutated in EBV-positive
BL. This is consistent with our observation of elevated AICDA
expression in EBV-positive tumors (Figure 2B-C). We also found
regulatory elements such as the PVT1 promoter and a PAX5
enhancer are mutated in BL, indicating another potential role for
AICDA (Figure 3). There is recent evidence that the PVT1 pro-
moter acts as a tumor suppressor by insulating intragenic en-
hancers from inducing MYC expression, and that study showed
PVT1 promoter mutations could enhance cancer cell growth.57

Although the mutations in BL target a different TSS of PVT1 than
what was reported by Cho et al, it is unclear whether these have a
similar functional effect, considering that MYC is already con-
stitutively expressed in BL. A link between AICDA activity and
EBV or malaria infection has long been hypothesized, but with a
paucity of evidence from in vivo experiments.53 Our findings
address this lack of data by showing increased AICDA expres-
sion in EBV-positive BL, which has been previously observed in
vitro.58,59 Other studies have demonstrated similar increases in
AICDA expression resulting from malaria infection.60-62 Further
research is needed to confirm whether malaria plays an addi-
tional role in increasing AICDA expression.

In view of the importance of BCR signaling in BL,14 we identified
V genes that encode clonal BCRs expressed in BL. Heavy chain V
gene usage was not uniform, with IGHV4-34, IGHV3-30, and
IGHV3-7 being the most commonly used, which is consistent
with a previously published report and similar to what we found
in DLBCL (Figure 1B).63 Of these, IGHV4-34 is the best char-
acterized with an established role in autoreactivity.64,65 Among
light chain V genes, IGKV3-20 was the most frequently used,
encoding a clonal BCR in 21 (20%) tumors. Preferential IGKV3-20
usage has been observed in other B-cell non-Hodgkin lymphomas,
especially in those linked to hepatitis C virus infection.66 We

observed relatively higher IGKV3-20 usage in BL than in DLBCL
(Figure 1B), although this difference was not significant. To our
knowledge, this is the first time that disproportionate usage of
IGKV3-20 is described in BL, which features one of the highest
frequencies of IGKV3-20 usage among hepatitis C virus-negative
B-cell malignancies.66 If an independent study confirms frequent
IGKV3-20 usage in BL, this may suggest that patients with BL
could benefit from emerging BCR-directed vaccines that target
IGKV3-20 peptides.66 The remaining lesser known V genes that
were overrepresented in our data set should be explored in
future functional studies, given that their role in lymphoma
pathology remains largely uncharacterized.

This study sheds new light on the mechanisms behind EBV
carcinogenicity by leveraging the largest yet multidimensional
data set comprising both EBV-positive and EBV-negative BLs.
The clear genetic and molecular distinctions between EBV-
positive and EBV-negative BL identified here reveal a multi-
faceted role for the virus in Burkitt lymphomagenesis and open
new avenues to investigate treatment options. These results
nominate EBV status as a more clinically relevant criterion for BL
classification, given the pathogenic differences and associated
implications for treatment. First, our findings highlight the po-
tential utility of DNA-damaging chemotherapy in those patients
with abrogated apoptosis or defective DNAMMR. Second, EBV-
positive tumors appear reliant on EBV gene expression, which
represents a potential vulnerability and nominates EBV as a
therapeutic target. Third, the CDK4/6 inhibitor palbociclib would
be predicted to be more effective in EBV-negative or sporadic BL
as the result of an enhanced reliance onCCND3mutations.14 Last,
nonuniform V gene usage complements existing data showing a
reliance on BCR signaling in BL, supporting the clinical use of
inhibitors for PI3K, Syk, and Src family kinases.14
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