Burkitt Lymphoma Genome

Sequencing Project:

Integrative Genomic and Transcriptomic Characterization of Burkitt Lymphoma

Bruno M. Grande*, Daniela S. Gerhard*, Nicholas B. Griner, Corey Casper, Constance Namirembe, Abraham Omoding, Jackson Orem, Sam M. Mbulaiteye, Charles G. Mullighan, John T. Sandlund, Thomas Alexander, John Kim Choi, Jeremy S. Abramson, Thomas G. Gross, Ariela Noy, Jeffrey Bethony, Timothy C. Greiner, Elaine S. Jaffe, Nancy Lee Harris, Julie M. Gastier-Foster, Jay Bowen, Hilary Allen, Roland Schmitz, Wyndham H. Wilson, Jean Paul Martin, Marie-Reine Martin, John D. Irvin, Maureen Dyer, Patee Gesuwan, Yiwen He, Tanja M. Davidsen, Karen Novik, Andrew J. Mungall, Yussanne Ma, Marco A. Marra, Ryan D. Morin⁺, Louis M. Staudt⁺

*,† Contributed equally

Burkitt lymphoma (BL) is an aggressive B-cell non-Hodgkin lymphoma

IG-MYC translocation is a genetic hallmark

Three clinical variants:

- 1) Sporadic BL: North America, Europe
- 2) Endemic BL: Africa, South America (malaria-endemic)
- 3) <u>Immunodeficiency-related BL</u>: global, mostly HIV+

Rare in sporadic, most common in children located in malaria-endemic regions such as equatorial Africa

Current challenges with treating Burkitt lymphoma

Endemic BL

- Late stage at presentation
- Poor response to therapy
- Treatment-related toxicity

Figure source: Buckle *et al. Int J Cancer*. 2016;139(6):1231-40.

Sporadic BL

• Therapy is less effective in adult and elderly patients

Figure source: Costa *et al. Blood*. 2013;121(24):4861-6. 3

Building a tremendous genomic resource for BL research

Variable	BLGSP (N = 95)	ICGC (N = 17)	Total (N = 112)
Sex			
Male	65	16	81
Female	30	1	31
Age Group			
Pediatric (0–20 yr)	92	17	109
Adult (21+ yr)	3	0	3
Clinical Variant			
Endemic	71	0	71
Sporadic	20	17	37
HIV-positive	4	0	4

Whole genome sequencing

- 80X tumors (ICGC at 40X)
- 40X matched normals

Ribo-depleted RNA sequencing

• 200 million reads per library

microRNA sequencing

Clinical metadata

Refining the mutational landscape in BL

Novel BL genes: SIN3A, CHD8, USP7, RFX7, HIST1H1E

Subtype-specific mutations: More differences based on EBV status than clinical variant

Cohort-w	vide	Endemic BL Cases	Sporadic BL Cases	
DDX3X	42%			
ID3	40%		****	
ARID1A	38%			
TP53	29%			
FOXO1	28%			
CCND3	24%		•	
SMARCA4	22%			
FBXO11	19%			
GNA13	17%			
PCBP1	12%			
SIN3A	12%			
TFAP4	12%			
GNAI2	12%			
KMT2D	10%			
RHOA	10%			
HIST1H1E	10%			
P2RY8	9%			
USP7	8%			
CHD8	8%			
BCL7A	8%			
RFX7	6%			
TCF3	6%			
Legend ■ Truncating mutation ■ Inframe mutation ■ Missense mutation				

Novel structural and non-coding mutations in DDX3X

Deletions and inversions (N = 5)

Predicted to disrupt open reading frame and truncate protein

Branch point mutations (N = 2)

Aberrant transcript splicing observed in RNA-seq data

Potentially activating mutation hotspots in GNAI2

Mutated residues cluster in protein structure around GDP binding site

R179H is orthologous to gain-of-function R201H mutations in GNAS

References: Kretzmer *et al. Nat Genet.* 2015;47(11):1316-25. / Landis *et al. Nature.* 1989;340(6236):692-6.

Novel genes carry out functions relevant to BL biology

Mutations in *SIN3A* (N = 16)

Known antagonist of Myc activity

Induces histone acetylation of Myc responsive genes

Mutations in USP7 (N = 7)

Encodes a deubiquitinase that counteracts Mdm2-mediated degradation of p53

Non-coding mutations form clusters in the genome

- One cluster overlaps a validated *PAX5* enhancer
- Similar mutations found in:
 - Chronic lymphocytic leukemia (CLL)
 - Other B-cell lymphomas

PAX5 plays an important role in B-cell differentiation

Figure source: Puente et al. Nature. 2015;526(7574):519-24.

Aberrant somatic hypermutation is a feature of endemic or EBV-positive BL

Many non-coding mutations can be linked to somatic hypermutation

AID activity is significantly higher in EBV-positive tumors

Reference: Kalchschmidt et al. J Exp Med. 2016;213(6):921-8.

11

blasts

cytes

Results summary

Landscape of coding and non-coding mutations was refined for both established and novel genes associated with BL

Greater differences exist based on EBV status than geographic origin:

- Number of significantly differentially mutated genes
- Aberrant somatic hypermutation and AID expression

Possible therapeutic opportunities warrant further investigation:

- Potential activating hotspot mutations in GNAI2
- Mdm2 inhibitors for USP7-mutant, TP53-wildtype tumors

Acknowledgements

British Columbia Cancer Agency Vancouver. Canada Andy Mungall Karen Novik Marco A. Marra Ryan D. Morin Yussanne Ma Foundation for Burkitt Lymphoma Research Geneva. Switzerland Jean Paul Martin John D. Irvin Marie-Reine Martin **George Washington University** Washington, DC Fabio Leal Jeffrey Bethony Infectious Disease Research Institute Seattle, WA **Corey Casper** Leidos Biomedical Research Frederick, MD

Maureen Dyer

Massachusetts General Hospital Boston. MA Jeremy S. Abramson Nancy Lee Harris **Memorial Sloan Kettering Cancer Center New York, NY** Ariela Nov National Cancer Institute Bethesda, MD Daniela S. Gerhard Flaine S. Jaffe Louis M. Staudt Nicholas B. Griner Patee Gesuwan **Roland Schmitz** Sam M. Mbulaiteye Tanja M. Davidsen Thomas Gross Wyndham Wilson Yiwen He

Nationwide Children's Hospital Columbus, OH Hilary Allen Jay Bowen Julie M. Gastier-Foster St. Jude Children's Hospital Memphis, TN Charles G. Mullighan John Kim Choi John T. Sandlund **Thomas Alexander Uganda Cancer Institute** Kampala, Uganda Abraham Omoding **Constance Namirembe** Jackson Orem **University of Nebraska Medical Center Omaha**, NE

Timothy C. Greiner

The patients and their families

Thank you for your attention

Any questions?