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Abstract 

The genetic subtypes of Burkitt Lymphoma (BL) have been defined, whereas the 

role of epigenetics remains to be comprehensively characterized. We searched 

genomic DNA from 218 patients across four continents, for recurrent DNA methylation 

patterns and their associations with clinical and molecular features. We identified DNA 

methylation patterns that were not fully explained by EBV status or mutation status, 

leading to two epitypes, described here as HypoBL and HyperBL. Each is characterized 

by distinct genomic and clinical features including global methylation, mutation burden, 

aberrant somatic hypermutation, and survival outcomes. Methylation, gene expression 

and mutational differences between the epitypes support a model in which each arises 

from a distinct cell-of-origin. These results, pending validation in external cohorts, point 

to a refined risk assessment for BL patients who may experience inferior outcomes.   
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Statement of significance 

Burkitt lymphoma (BL) can be divided into two epigenetic subtypes (epitypes), each 

carrying distinct biological, transcriptomic, genomic, and clinical features. Epitype is 

more strongly associated with clinical and mutational features than EBV status or 

genetic subtype, highlighting an important additional layer of BL pathogenesis. 
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Introduction 

Burkitt Lymphoma (BL) is the most prevalent type of B-cell non-Hodgkin 

lymphoma (NHL) affecting children, accounting for approximately 50% of pediatric NHL 

cases whereas it is more rare in adults(1–3). The genetic hallmark is a chromosomal 

translocation that places MYC under the regulation of a potent enhancer, causing 

constitutive expression(4,5). BL has historically been classified based on clinical variant 

status (endemic or sporadic) and patient age (pediatric or adult)(6,7). Recent evidence 

has underscored the association of Epstein-Barr virus (EBV) tumor positivity with 

distinct genomic features(8–10). These insights have challenged the relevance of 

clinical variant status, pointing to EBV status as more biologically meaningful. Using 

genome-wide mutational information, four genetic subgroups of BL have been 

proposed, which span pediatric and adult BL. These are marked by distinct 

combinations of driver mutations, namely in DDX3X, GNA13, GNAI2 (DGG-BL), ID3, 

CCND3 (IC-BL), and TP53 (Q53-BL), and some of them bearing distinct patterns of 

non-coding mutations caused by aberrant somatic hypermutation (aSHM)(9).  

The genome-wide methylation features of BL have yet to be extensively studied. 

Changes to CpG methylation in tumors typically involves widespread/global 

hypomethylation and local hypermethylation of specific genes. Specifically, changes to 

promoters and other regulatory regions can influence expression of tumor suppressor 

genes(11,12). This tends to preserve some of the methylation pattern of the founding 

cell and this epigenetic memory can inform on the cell-of-origin(13–17). Owing to 

different natural histories, differentiation stages, and selective pressures experienced by 

these tumors, DNA methylation patterns may also be associated with different driver 

mutations(16–18). Considering the relatively low number of BL driver genes relative to 

other mature B-cell neoplasms, we sought to explore the contribution of epigenetic 

changes to BL and how these might inform on other clinical or molecular features. 

D
ow

nloaded from
 http://aacrjournals.org/bloodcancerdiscov/article-pdf/doi/10.1158/2643-3230.BC

D
-24-0240/3604186/bcd-24-0240.pdf by guest on 16 M

ay 2025



7 

 

Results 

Identifying and distinguishing the epigenetic landscape of BL 

We applied array-based genome-wide methylation profiling to 218 BL biopsies 

collected at diagnosis (156 pediatric and 62 adult) along with 6 normal centroblast   

samples. We also performed whole genome sequencing on nine of these samples using 

the PromethION platform and used these data to resolve CpG methylation sites and 

entropy . Our analysis leveraged existing genomic and clinical information from the 

same cohort, which was described previously(8,9).  As has been observed in other 

cancers, the BLs exhibited widespread DNA hypomethylation with localized 

hypermethylation relative to centroblasts (11,12) (Figure 1A-B). Specifically, this 

comparison identified 357,124 differentially methylated probes (DMPs) with 191,724 

showing hypomethylation and 165,400 showing hypermethylation in BL. When this 

comparison was performed separately according to EBV status, EBV-positive BLs had 

more regions affected by methylation changes relative to centroblasts and a significantly 

higher number of DMPs exhibiting hypermethylation (Figure 1C-D; P<1x10-16, Fisher’s 

Exact). The number of DMPs in each chromatin state should be approached with 

caution as the extent of probe coverage in each of these regions is constrained by the 

array design. It is clear, however, that the majority of BL-associated hypomethylation 

affects regions that are typically heterochromatin, regardless of EBV status. In contrast, 

the regions affected by hypermethylation were more diverse in both EBV-positive and 

EBV-negative BL (Figure 1D).  

Through region-level analyses, we identified 10,715 and 7,320 differentially 

methylated regions (DMRs) in EBV-positive and EBV-negative BL samples, respectively 

(Supplemental Tables 1-2). Of these, 49,855 DMPs and 5334 DMRs were shared 

between EBV-positive and EBV-negative comparisons, suggesting that changes to 

methylation within these regions is a shared feature across BL (Figure 1E). These pan-

BL DMRs span 3340 genes, including genes differentially expressed between 

centrocytes and centroblasts (CXCR5, CCND1, SLAMF1), genes hypermethylated in 

other B-cell lymphomas (TP73, IL12BR2, GSTP1, MT1G, CDH1, RARB, RBP1, SLIT2, 
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DLC1, p16, DAPK1, KLF4, DBC1), and genes with differential expression between BL 

and diffuse large B-cell lymphoma (DLBCL) (SOX11, STAT3, CD44, CTSH, 

DLEU1,BATF,BCL2)(12,19–28)(Supplemental Table 3).  

We next investigated whether genes commonly mutated in BL(8,9,29) (“BL 

genes”) are also associated with DNA methylation patterns consistent with 

transcriptional activity. We compared the methylation state of the promoter with the 

expression of the corresponding gene across all samples. Among these genes, there 

was a negative correlation between methylation and expression for CREBBP, DTX1, 

HIST1H1D, ID3, KLHL6, SMARCA4, TCL1A, and TET2 (Supplemental Figure 1A). 

This is consistent with the notion that the expression of these genes is repressed by 

DNA methylation in a subset of BLs. As the function of a gene could be similarly 

suppressed genetically, we incorporated the mutation status of each gene into our 

analysis using a linear model. This confirmed an association between ID3 promoter 

methylation and mutation status. Samples carrying ID3 mutations exhibited lower 

promoter methylation (mean beta = 0.158) whereas BL with intact ID3 had a 

significantly higher degree of methylation (mean beta = 0.199; P<0.001). Although the 

promoter exhibited a predominantly hypomethylated state across all BL samples (mean 

beta = 0.182), we noted that subtle differences in ID3 promoter methylation were 

associated with significant changes in gene expression (P<0.001; Supplemental 

Figure 1B). A similar trend was observed for SMARCA4, although for this gene the 

difference in the expression level did not reach significance (P=0.09; Supplemental 

Figure 1B). Taken together, these data support the hypothesis that the loss of ID3 

function can be acquired through promoter hypermethylation as well as genetic loss. 

Because non-coding mutations also have the potential to influence expression 

through the alteration of regulatory sequences, we investigated the methylation of non-

coding regions enriched for mutations in BL, specifically those affected by aSHM(9). 

Given the disparate rates of aSHM observed between EBV-positive and EBV-negative 

BL, we explored whether methylation patterns associated with EBV status were 

correlated with frequencies of aSHM(8,9). To compare with DLBCL, which has higher 

rates of aSHM relative to BL(9), this analysis included array data from 56 DLBCLs from 
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a previous study(18) . We noted a general trend of low average beta values across 

most of analyzed aSHM regions, which is seen across BL, DLBCL and 15 normal 

germinal center (GC) B cells, whereas a minority of these regions exhibited variable 

levels of methylation among the BLs and DLBCLs (Supplemental Figure 1C). The 

highly methylated regions were consistently observed across the BLs and GC B cells, 

implying this epigenetic pattern reflects the state of B cells at this differentiation stage. 

The hypermethylation of SEPT9 was predominantly observed in EBV-positive BL, 

consistent with the lower rates of aSHM across this region in EBV-positive BL samples 

compared to EBV-negative BLs and DLBCLs(9) (Supplemental Figure 1D). 

Additionally, ST6GAL1 had the highest degree of methylation in EBV-positive BL, where 

similar rates of aSHM were observed between EBV-positive and EBV-negative BL 

(Supplemental Figure 1D). While most of these hypermethylated regions were also 

methylated in GC cells, ST6GAL1 methylation was uniquely observed in BL. Overall, 

there was no consistent association between methylation state and the degree of 

mutations in these regions.  

EBV-associated DNA methylation patterns in BL 

To explore the effect of EBV on the BL methylome, we stratified BLs on EBV 

status and searched for methylation differences. This identified 30,845 significant DMPs 

(|abs(logFC)|> 0.25 and Q < 0.05), with most (30,726) hypermethylated in EBV-positive 

BL. DMPs were primarily located in openSeas (15985), CpG shores (8742), CpG 

islands (3021), and CpG shelves (2965). Using chromatin and transcriptional state 

annotations, we found a significant (P < 0.001) enrichment of hypermethylated DMPs in 

annotated enhancer regions (Figure 2A). Using a region-level analysis, we identified a 

total of 6,000 DMRs, again with most (5,991) hypermethylated in EBV-positive BL 

(Figure 2B, Supplemental Table 4).  

There are gene expression differences between EBV+ and EBV- BL, which may 

be explained, in part, by DNA methylation changes orchestrated by the virus. We 

searched for genes near DMRs with correlation between expression and methylation 

levels. Among the 4782 genes associated with DMRs, 476 had significant correlations 
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(|abs(R2)|> 0.4 and Q < 0.01) (Figure 2C, Supplemental Table 5). Most (430) of these 

genes exhibited anticorrelation between methylation and expression level. Among these 

DMR/gene pairs, we identified several genes with relevance in B-cell lymphomas, 

including TERT, SOX11, DNMT3A, HVCN1, and RCOR2. The association between 

hypermethylation and reduced expression of TERT in EBV-positive BL was compelling 

given its association with the reactivation of the EBV lytic cycle(30),(31). 

Pathway enrichment analysis of 441 negatively correlated genes revealed an 

enrichment for RNA polymerase II transcription regulatory region sequence-specific 

DNA binding (Q = 0.03; Supplemental Table 6). Overall, it appears that the 

hypermethylation landscape of EBV-positive BL methylomes could broadly affect the 

expression of genes responsible for regulating transcription, thereby broadly 

reprogramming the transcriptome of BL.  

Identification and characterization of BL epitypes 

  To resolve DNA methylation patterns that cannot be explained by EBV status, we 

used unsupervised clustering and applied non-negative matrix factorization. The optimal 

result resolved two patient clusters with distinct methylation patterns among these 

probes (Supplemental Figure 2A,B). The genomes in one cluster were predominantly 

hypermethylated, hereafter referred to as HyperBL with the remaining cases having 

lower methylation of most probes (HypoBL). Using the cluster assignments as training 

data, we implemented a statistical model to determine the probability that each BL 

belonged to either epigenetic subtype (epitype). The optimized classifier utilized 60 

probes and had a high accuracy (88%) in the training set of 65% of samples 

(Supplemental Table 7) and similar accuracy (86%) when applied to the held-out 

validation set. 27 of the training samples (13 HyperBL and 14 HypoBL) were 

unclassified by this approach due to an intermediate level of methylation at these 

probes (Figure 3A, Supplemental Table 8). These epitype labels were used for all 

subsequent analyses. We noted an even representation of adult and pediatric cases 

between HyperBL and HypoBL. Although HypoBL was approximately equally split 

between EBV-positive (N=56/88) and EBV-negative (N=32/88) tumors, HyperBL had an 
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enrichment of EBV-positive (N=78/102) compared to EBV-negative tumors (N=24/102, 

Figure 3B-C). When the recently described BL genetic subgroups(9) are considered, 

DGG-BL was predominantly HyperBL (N=45/70) whereas IC-BL was mostly HypoBL 

(N=38/65, Figure 3D). The methylation differences associated with these epitypes 

cannot be explained by differences in the tumor sample purity as there was no 

significant (P > 0.05) difference between tumor purities estimated by four separate 

approaches: Beta values(32), RNA-seq(33), and WGS data using either CNVs (34) or 

mean VAF of coding mutations (Supplemental Table 8). 

We next compared the methylation differences between each epitype and normal 

centroblasts, revealing marked changes in the methylome of HyperBL (Figure 4A-B). 

The magnitude of changes in the methylome of HyperBL was greater than the 

magnitude of changes when EBV-positive BL was compared to normal centroblasts. 

Specifically, while HyperBL displayed a similar number of hypermethylated DMPs 

compared to EBV-positive BL (57,596 vs 61,336) they harbored significantly (P < 0.001) 

more hypomethylated DMPs (83,933 vs 47,609). The methylation features of HypoBL 

more closely resembled that of centroblasts, with fewer DMPs (8227 hypermethylated, 

32581 hypomethylated). Directly comparing HyperBL and HypoBL revealed 19832 

significant DMPs (Q < 0.05 and |logfoldchange| > 0.25). Most of these were methylated 

in HyperBL and were predominantly found in openSeas (8733), followed by CpG islands 

(4233), CpG shores (2957), and CpG shelves (1068). The analysis of chromatin and 

transcriptional state annotations revealed a significant enrichment (P < 0.001) of 

hypermethylated DMPs in promoters (Figure 4C). Performing the region level analyses 

resolved 5550 DMRs, mostly showing hypermethylation in HyperBL (Figure 4D, 

Supplemental Table 9). Interestingly, unlike the result when stratifying on EBV status, 

the DMR associated with HyperBL correspond to regions where methylation has been 

acquired compared to normal centroblasts and HypoBL. Overall, the hypermethylation 

patterns in HyperBL were more distinct from those found in normal centroblasts, 

whereas EBV-positive BL exhibits methylation patterns closer to normal centroblasts. 

(Figure 2B, Figure 4D). 
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As before, we searched for genes with evidence for epigenetic silencing, here 

focusing on DMRs distinguishing the epitypes. These regions were associated with 

2825 genes, of which 210 exhibited significant correlations with expression (R2 > 0.4 

and Q < 0.01) (Figure 4E, Supplemental Table 10). These include several genes that 

are mutated in DLBCL and, to a lesser extent, BL. The hypermethylation and reduced 

expression of IRF4 was intriguing, given the role of this transcription factor with terminal 

differentiation. Within the DMRs, we also observed hypermethylation of several IRF4 

target genes, all of which were negatively correlated with expression in HyperBL. These 

genes are involved in the NF-kB pathway, important in plasma cell differentiation and 

are associated with activated B-cell-like (ABC) DLBCL. Hypermethylation of the TET2 

promoter was associated with significantly lower expression (R2 = -0.29, P < 0.001). 

When compared by epitype, HyperBLs exhibited significantly lower TET2 expression 

than HypoBL (P<0.001; Supplemental Figure 2C). Moreover, comparing TET2 

expression across various different B-cell lymphoma subtypes, we found HyperBL to 

have the lowest TET2 expression (mean vst = 9.98; Supplemental Figure 2D). Given 

its role in CpG demethylation, it is possible that lower TET2 expression in HyperBL 

permits malignant cells to progressively acquire increased levels of methylation.  

The methylation patterns in B-cell neoplasms retain some features of the 

epigenome of their cell-of-origin(18,35–37). We analyzed the BLs along with 1595 

methylation profiles from a variety of B-cell neoplasms. By principal component 

analysis, the BLs were generally separated from other malignancies with the exception 

of DLBCL. There was also a general separation of HyperBL and HypoBL. Relative to 

the trajectory of B-cell differentiation, the methylation profiles of HypoBLs were closer to 

those of normal memory B or plasma cells15-16 (Supplemental Figure 2E). HypoBL also 

exhibited a closer association with m-CLL and C2.MCL, both of which have proposed 

origins in memory B cells. The proximity of HypoBL to normal memory B and plasma 

cell populations, m-CLL and C2.MCL further supports a model wherein the two epitypes 

arise from distinct cells-of-origin. 

To further resolve the underlying factors contributing to HyperBL, we explored 

whether the affected regions were associated with specific regulatory features. As 
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transcription factors (TF) can promote hypomethylation of regulatory regions, we 

performed TF motif discovery within the DMRs24,25.  This identified motifs associated 

with transcription factor families responsible for B-cell development, including the NF-kB 

family, IRF4, and PRDM1 (Figure 4F, Supplemental Table 11). In normal B-cell 

development, increased expression of these transcription factors promotes terminal 

differentiation and is linked to the hypomethylation of their associated targets in memory 

B cells and plasma cells(15). These observations imply that these TFs are either active 

or primed for activation within HypoBL. Additionally, the activation of TFs associated 

with memory B cells and plasma cells may indicate that the two epitypes arise from B 

cells at distinct differentiation stages. When this analysis was performed using only 

DMRs associated with CpG islands, enhancers, and promoters, and not with gene body 

or intergenic regions, we obtained comparable results (Supplemental Figure 3A). For 

comparison, we conducted similar analyses based on EBV status, which resulted in 

fewer enrichments for motifs, leaving only the zinc-finger and AP-2 family TFs as 

significant (Supplemental Figure 3B, Supplemental Table 12). The absence of B-cell 

specific TF binding motifs among the EBV-related DMRs suggests that the 

hypermethylation in EBV-positive BL is not a consequence of inactivation of their 

cognate TF but is more plausibly attributable to pressures imposed by the viral infection. 

Using epiCMIT16, a computational approach that infers historical mitotic activity 

based on specific methylation changes, we estimated the relative number of cell 

divisions in each tumor. HyperBL samples exhibited significantly higher epiCMIT values 

compared to HypoBL (P=0.001; Supplemental Figure 3C). When comparing epiCMIT 

values across B-cell malignancies, we noted a trend towards higher epiCMIT values in 

the entities thought to arise from B cells closer to terminal differentiation. This could be 

explained by the cumulative effect of mitotic cell divisions during normal differentiation 

and following malignant transformation(18) (Supplemental Figure 3D). 

To explore methylation changes comprehensively, we sequenced 9 of these 

samples using long-read sequencing. Nanopolish reported the CpG methylation status 

of ~28 million CpG sites, representing nearly 99% of all CpGs in the genome. There 

was strong correlation between these beta values and beta values from the EPIC array 
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(Supplemental Figure 4A). We then performed differential methylation analysis to 

compare the two epitypes. This revealed a total of 984,369 CpGs that exhibited 

differential methylation between HypoBL and HyperBL, along with 34,008 DMRs 

(Supplemental Figure 4B). Most of these regions displayed hypermethylation in 

HyperBLs and they were prominently enriched in promoter regions. These DMRs were 

strongly correlated with those identified through the EPIC array, providing additional 

support for our findings (Spearman correlation, P value < 0.001).  

The long-read sequencing allows the resolution of CpG methylation status of 

each DNA molecule, which yields a digital measurement. This affords the opportunity to 

quantify the heterogeneity of methylation across DNA molecules (entropy)(38) that is 

not possible with analog measurements such as beta values. We compared the entropy 

at CpG sites within genes and regulatory elements in both epitypes. The methylation 

entropy of promoter regions was substantially higher in HyperBL compared to HypoBL, 

indicating a more uniform DNA methylation state at these sites in HypoBL 

(Supplemental Figure 4C,D). This may imply that the hypomethylation of DMRs in 

promoter regions of HypoBL results from strong selective pressure, involving active 

enzymatic DNA demethylation. Using an overrepresentation analysis of promoter 

regions with low entropy in HypoBL, we found an enrichment of genes involved in 

hematopoietic differentiation (GO:0048534) and hematopoietic stem cell differentiation 

(GO:0060218; Supplemental Figure 4E). The low entropy within these promoters 

suggest their epigenetic de-repression or sustained maintenance of de-repression in 

HypoBL. These genes are activated in long-lived memory B cells, which are considered 

to possess a stemness reminiscent of CD8+ memory T cells(39–41). These results 

further indicate a distinct cell-of-origin for HypoBL. 

Genetic features of epitypes 

Utilizing previously published genome-wide mutation profiles(9), we next 

compared the epitypes for differences in mutation patterns (Figure 5A) and mutation 

burden.  The latter was significantly higher in HyperBL (P<0.001; Figure 5B). This 

disparity was consistent when restricted to coding mutations (P<0.001) or known BL 
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driver mutations (P=0.012). Comparing the mutation frequency in each BL gene 

between epitypes and by modules of genes with related function (Supplemental Figure 

5A) revealed several distinctions. At the single-gene level, only ID3 exhibited a higher 

frequency of mutations in HypoBL. For modules, genes associated with epigenetic 

regulation and antigen presentation by major histocompatibility complex (MHC) 

exhibited a higher frequency of mutations in HyperBL (**Q <0.01, *Q <0.05, Fisher’s 

Exact) (Supplemental Figure 5A). Interestingly, ID3 promoter methylation was 

significantly higher in patients lacking ID3 mutations, implying epigenetic silencing may 

be an alternative avenue to reducing ID3 function in BL (P=0.005, Fisher’s Exact). 

Considering the overlap between HyperBL with EBV-positivity, we searched for 

differences within each epitype by stratifying patients into four categories using both 

epitype and EBV status. Interestingly, whereas TP53 mutations were common in EBV-

positive HyperBL (HyperBL+)(24%) they are absent among the EBV-positive HypoBL 

(HypoBL-) (Figure 5A). Among EBV- cases, HyperBL- had mutations in at least one 

epigenetic modifier, whereas no mutations in these were found in HypoBL-. For 

example, SMARCA4 mutations were common in EBV-negative BL overall but exclusive 

to HyperBL- (Figure 5A). This interplay implies distinct selective paths to 

lymphomagenesis that may be influenced by both EBV status and epitype.  

The genome-wide landscape of mutations in HyperBL was strikingly different, 

with higher global mutation burden along with more coding mutations and mutations in 

BL genes (Figure 5B). This contrasts with prior observations based on EBV status in 

BL, where EBV-positive BLs possess a higher frequency of global and coding mutations 

but notably fewer driver mutations. Using mutational signatures, we compared the 

single base substitution exposures between the epitypes. Each of SBS1 (clock-like), 

SBS5 (clock-like/age-associated), and SBS9 (associated with AICDA and polymerase η 

activity) exhibited significant differences between the epitypes (Figure 5C). The 

mutation levels attributed to all three signatures were consistently higher in HyperBL 

(P<0.001). Considering the previous link between the SBS9 mutation signature and 

EBV-positive BL, we considered whether EBV status or epitype was the primary factor 

influencing mutation rates. Using a linear model, we found that mutation rates linked to 
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SBS9, SBS1 and SBS5 were more significantly associated with epitype than EBV 

status. Similarly, epitype more accurately explained the variations in mutation burden, 

encompassing global, coding, and driver mutations. This underscores the unique 

molecular attributes linked to each BL epitype, suggesting that this classification is more 

relevant than EBV status when considering the molecular features of the BL genome. 

Mutations occurring within regions known for aSHM are attributed to the 

abnormal activity of activation-induced cytidine deaminase (AID), a pattern that has 

been observed predominantly in EBV-positive BLs. By comparing the level of aSHM-

associated mutations between the two epitypes, a higher rate was found in the HyperBL 

genomes (Supplemental Figure 5B). We assessed whether aSHM mutations at each 

of these sites, and the total burden of aSHM-associated mutations, were more strongly 

associated with epitype or EBV status. Again, epitype membership consistently 

exhibited a stronger association than EBV status (Supplemental Figure 5B, 

Supplemental Table 13). While this does not exclude that aSHM are associated with 

EBV status, they are more strongly correlated with epitype membership regardless of 

viral infection.  

Additional molecular distinctions between the epitypes 

Although DNA methylation influences expression, it was unclear whether the 

epitypes would harbor consistent gene expression changes shaped by their unique 

DNA methylation landscape. Comparing the epitypes directly, while controlling for EBV 

status, revealed only 218 genes with significant differential expression (padj < 0.01 and 

|log2FoldChange| > 1), including TET2, IRF4, CD44, and CD24 (Figure 6A, 

Supplemental Table 14). The differential expression of CD44, CD24 and IRF4 are, 

respectively, of interest due to their dynamic expression in the GC reaction (CD44 and 

CD24) and role in plasmablastic differentiation(23,42,43).  Higher IRF4 expression in 

HypoBL is reminiscent with the difference we observed between IC-BL and DGG-BL 

genetic subtypes. Although the variation in IRF4 expression was more pronounced 

when categorized by genetic subtype as opposed to epitype, the parallels in the 

distribution of IRF4 expression based on both criteria implies that these classification 
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methods are complementary yet capture distinct biological features (Supplemental 

Figure 5C,D). 

We analyzed the RNA-seq data to infer B-cell receptor expression and search for 

evidence of class-switch recombination (CSR). We classified each sample based on 

IGH constant gene expression (IGHM, IGHD, IGHA, IGHG, or IGHE) (Supplemental 

Figure 5E) and observed significantly higher (P = 0.03) representation of IGHG among 

the HyperBLs. To complement this, we attributed the mechanism underlying each of the 

MYC rearrangements. Whereas 32% of HyperBL cases had a MYC translocation that 

could be attributed to CSR, the majority (56%) of MYC translocations in HypoBL could 

be attributed to CSR (Supplemental Figure 5F). Considering the higher rate of IGHM 

expression in HypoBL and the significantly higher (P = 0.003) proportion of MYC 

rearrangements resulting from CSR, we conclude that HypoBL may derive from 

memory B cell that has attempted, and failed, to undergo CSR(44–47). 

Given the limited number of genes with consistent expression differences, we 

used gene set enrichment analyses to search for more subtle effects on genes with 

related function. We identified 32 differentially expressed gene sets(23), including two 

associated with the IRF4 network (Figure 6B, Supplemental Figure 6, Supplemental 

Table 15). HypoBL displayed elevated expression of genes involved in IRF4 induction 

in ABC-DLBCL, other ABC-DLBCL-related pathways, as well as a memory B cell 

precursor pathway (Figure 6B). HyperBL showed elevated expression of genes in 

genes related to IRF4 repression in GC B-cell-like (GCB)-DLBCL and other pathways 

associated with GCB-DLBCL (Figure 6B). The elevated pathways in each epitype is 

consistent with earlier results that suggest that HypoBL originate from a memory B cell 

whereas HyperBL likely originates from centroblasts.  

Relationship between epitypes and patient outcomes 

We conducted Kaplan-Meier survival analyses within the adult cases, for whom 

the follow-up data was most complete. Among these cases, patients with HyperBL had 

significantly shorter progression-free and overall survival. This difference remains 
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significant (P = 0.035 and P = 0.014, respectively) when the unclassified patients are 

also included in the analysis (Figure 7A-B). Moreover, the difference cannot be 

explained by other molecular biomarkers such as TP53 mutation status(9) because 

frequencies of TP53 mutations were relatively balanced in both epitypes within the adult 

patients and epitype status remained significant in a multivariate analysis with TP53 

mutation status (Supplemental Figure 7A-D). Although this finding requires 

confirmation in additional cohorts, the potential association between epitype and 

outcomes highlights DNA methylation status as a potential new prognostic biomarker for 

BL. 

Discussion 

Previous studies provided limited exploration of the BL methylome and its 

contribution to pathogenesis, primarily due to limited sample sizes and the narrow 

scope of comparisons focusing solely on EBV status or comparisons to follicular 

lymphoma(20,48). Here, we aimed to address these limitations by conducting a 

comprehensive examination of the BL methylome. Our findings confirm the influence of 

EBV status on DNA methylation and provide further evidence of the connection 

between EBV tumor positivity and hypermethylation within the DNA methylome, 

particularly in enhancer regions. Moreover, our investigation of the most variable CpGs 

in EBV-positive and EBV-negative BL allowed us to identify two distinct epitypes that 

extend beyond the classification based on EBV status alone.   

EBV infection is detected in a variable proportion of BL tumors, differing by 

clinical variant and age. EBV-positive BL cases exhibit distinct characteristics, including 

a lower number of driver mutations specifically related to apoptotic genes, higher rates 

of aSHM, and increased AICDA activity(8,9). Consistent with a previous study(8), we 

find that EBV-positive BLs display significant hypermethylation patterns in their DNA 

methylomes compared to EBV-negative BLs and normal centroblast samples. This 

hypermethylation predominantly occurs within OpenSea annotations, targets a number 

of genes previously identified as hypermethylated across B-cell lymphomas, and shows 

enrichment in enhancer regions(49–52). Our results are consistent with previous studies 
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showing that EBV can promote DNA hypermethylation aimed at precisely controlling the 

expression of specific genes, such as PRDM1, which can trigger EBV lytic reactivation, 

thereby increasing its capacity to evade detection by the immune system(30,49,50,52).  

The occurrence of focal hypermethylation within BL has been described in the 

context of EBV(49,50,53,54). While HyperBL is dominated by EBV-positive samples, 

HyperBL occurrence in EBV-negative cases suggests EBV infection may not be a 

prerequisite for this phenomenon. TET2 hypermethylation in HyperBL was recurrent 

and associated with reduced expression. Further, we note the highest incidence of 

mutations affecting regulators of epigenetic state among the genomes of HyperBLs. 

Indeed, among the 21 EBV- HyperBL cases, 3 had loss-of-function mutations affecting 

TET2 whereas there were none observed among the 63 EBV+ HyperBLs (P= 0.01396, 

Fisher’s Exact). Given the suggested role of TET2 mutations in genome 

hypermethylation in DLBCL(55,56), it is plausible that the results of TET2 mutation or 

hypermutation along with mutations in other epigenetic-related genes contribute to the 

hypermethylation pattern in the DNA methylome applicable to HyperBL, particularly in 

the absence of EBV.  

HyperBL also has elevated mutation frequencies in genes associated with 

epigenetic regulation and antigen presentation (Supplemental Figure 5A). In contrast, 

HypoBL exhibited a higher prevalence in genes associated with, notably, ID3 mutations. 

An inverse correlation emerged between ID3 mutation status and promoter methylation 

patterns. Specifically, we observed a significant prevalence of ID3 promoter 

hypermethylation in patients devoid of ID3 mutations. This pattern suggests that the 

inactivation of ID3 can occur either through genetic mutations or through epigenetic 

modifications, such as promoter hypermethylation, underscoring the multifaceted 

mechanisms that contribute to the functional loss of this gene. While we noted a 

pronounced correlation between HyperBL and EBV-positive BL, distinct variations exist 

sufficient to identify epitype as biologically distinct from EBV status. For example, 

approximately a quarter of EBV-positive HyperBL cases exhibited TP53 mutations, but 

none were observed in EBV-positive HypoBL. In the context of EBV-negative BL, all 

HyperBL cases exhibited mutations in at least one gene related to epigenetic regulation; 
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conversely, those mutations were not observed in EBV-negative HypoBL. These 

observed disparities underscore a multifaceted interaction and unique selective 

pressures that characterize the process of lymphomagenesis in each epitype.  

Non-coding mutations consistent with aSHM is a pattern previously linked to 

EBV-positive status in BLs(8,9). However, our findings reveal a notable enrichment of 

aSHM in HyperBL, a pattern that is correlated with but not wholly explained by EBV-

positive BL status per se. Our comparative analysis established a stronger linkage of 

aSHM rates with epitype after controlling for EBV status. Based on this comprehensive 

analysis, we infer that both HyperBL and HypoBL encompass EBV-positive and EBV-

negative tumors, and that each epitype represents a unique biological entity, 

independent of EBV status. Our data underscore that complexity of mechanisms 

leading variations in aSHM, mutation burden, and mutation signatures are influenced by 

EBV status, and more specifically the epitype. Thus, epitype may serve as a more 

relevant biomarker of mutational processes within BL genomes than EBV status, 

offering a new way to study BL pathogenesis. 

The use of gene expression for classification has been instrumental in 

understanding the diverse nature and prognosis of various NHLs, including BL. In 

DLBCL, it has offered insights into distinct biological underpinnings and facilitated its 

categorization into different COO subgroups(57–59). However, when extrapolated to 

other lymphomas, this approach has shown limitations particularly in diseases like 

chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), where 

distinguishing COO through gene expression profiling has been challenging(16,17). In 

our study, we describe epitypes within BL that potentially illuminate COO hypothesis, 

each associated with distinct survival outcomes. HyperBL and HypoBL are 

distinguished by notable molecular characteristics, with biological and transcriptomic 

distinctions that echo the COO subgroups in DLBCL. Specifically, HyperBL was 

associated with pronounced promoter hypermethylation and inferior overall survival, 

appearing epigenetically closer to the GC B cell. Conversely, HypoBL appears 

epigenetically closer to a memory B cell, maintaining methylation patterns typical of 

normal B cells at this developmental phase and is associated with better survival 
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outcomes. Furthermore, we found reduced entropy in the promoters of genes tied to 

hematopoietic stem cell differentiation in HypoBL.  

In our observations, HypoBL exhibited a pronounced elevation in IRF4 

expression compared to HyperBL, a trend that aligns with the distinctions noted 

between IC-BL and DGG-BL when sorted by genetic subtypes. While the disparity in 

IRF4 expression is more accentuated under genetic subtype classification, the 

similarities in IRF4 expression distribution under both genetic and epitype 

categorizations suggest these two classification approaches, though capturing different 

nuances, are complementary. In HypoBL, there is an amplified expression of genes 

associated with IRF4 induction in ABC DLBCL and a pathway indicative of a memory B-

cell precursors. These findings, coupled with distinct methylation patterns, suggest the 

possibility of unique cellular origins for HyperBL and HypoBL, each carrying distinct 

biological and clinical connotations. 

We have identified a subgroup within BL characterized by elevated levels of DNA 

methylation and have also shown elevated levels of methylation present within EBV-

positive BL. The shared occurrence of hypermethylation in both EBV-positive BL and 

the HyperBL subgroup highlights the potential value of investigating demethylating 

agents as part of BL treatment approaches. Further detailed investigations are essential 

to confirm these hypotheses and understand their broader implications in the context of 

BL pathogenesis and treatment.  

 

Methods 

Case accrual 

This study was performed in accordance with the ethical standards of the 

Declaration of Helsinki. All contributing sites provided Institutional Review Board 

approvals for the use of tissues submitted for molecular characterization. Written 

informed consent was obtained from the parents or guardians of the children and written 

D
ow

nloaded from
 http://aacrjournals.org/bloodcancerdiscov/article-pdf/doi/10.1158/2643-3230.BC

D
-24-0240/3604186/bcd-24-0240.pdf by guest on 16 M

ay 2025



22 

 

informed assent was obtained from children aged seven years or older prior to 

enrolment. 

Methylation data collection and integration 

Samples were analyzed by Illumina Infinium™ MethylationEPIC BeadChip arrays 

following the manufacturer’s protocol. Beginning with a compendium of 866,836 probes, 

a systematic filtration process was executed employing the minfi R package(60). Initial 

exclusion criteria encompassed the removal of 977 CpG probes with inadequate signal 

detection, followed by the omission of 30,435 CpGs corresponding to single nucleotide 

polymorphisms (SNPs) and 19,298 CpGs located on sex chromosomes. The retained 

subset of 812,126 CpGs exhibited a detection p-value <= 0.05 in over 10% of samples. 

Subsequent exclusions targeted samples with suboptimal intensity signals or 

problematic probe conversions, culminating in the elimination of 10 samples. Post-

filtration, a total of 218 BL samples and 6 normal centroblast samples(8) were 

preserved for further analysis, encompassing DNA methylation values for 812,126 CpG 

probes. These values were normalized employing the Subset-quantile Within Array 

Normalization (SWAN) algorithm. Comprehensive annotation of all CpGs was facilitated 

by the IlluminaHumanMethylationEPICanno.ilm10b4.hg19 (version 0.6) R package. To 

enable comparative analyses across B-cell neoplasms and normal B cell types, we 

analyzed methylation data from 1595 B cell samples from Duran-Ferrer et al(18) and 

integrated these with our data. Subsequent analyses were conducted using the 452,679 

CpG sites common to both methylation array platforms.  

Differential DNA methylation analyses 

DMRcate(61) was used to identify differentially methylated probes (DMPs) and 

differentially methylated regions (DMRs) using pre-processed beta values as input. 

DMPs required absolute log fold change (logFC) greater than 0.25 and adjusted p-value 

< 0.05. DMRs required a mean methylation difference >0.1, a false discovery rate 

(FDR) < 0.05, and at least 4 CpG sites. The analysis of differential methylation between 
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epitypes included EBV status as a variable in the design model to facilitate the 

identification of DMPs and DMRs not directly associated with EBV status.  

To quantify enrichment among DMPs, the entire complement of CpGs from the 

EPIC array was utilized to establish a background reference. To ascertain enrichments 

of CpG probes within regulatory regions (ChromHMM), we assessed the proportion of 

differentially methylated CpGs located in these regions relative to the proportion of 

background EPIC array probes within the same regulatory contexts. Enrichment 

significance was determined through the calculation of odds ratio scores using Fisher’s 

Exact (P < 0.01). 

NMF clustering 

  Non-negative Matrix Factorization (NMF) clustering relied on the NMF package 

(0.23.0). 5000 probes with the highest variance within each of the EBV+ and EBV- 

samples were used as input (10,000 probes total). To ascertain the optimal factorization 

rank for NMF, 100 bootstrapped iterations ranging from rank 2 to 5 were executed, with 

the optimal rank identified through the assessment of the cophenetic coefficient, 

dispersion, and silhouette metrics. Upon determining a factorization rank of 2 as the 

best fit, various algorithms, specifically those of Lee, Brunet, offset, and nsNMF, were 

evaluated by iteratively running them on the feature matrix until convergence was 

achieved. The Brunet algorithm emerged as the most suitable for subsequent analysis 

based on these evaluations. Throughout the estimation of factorization rank, algorithm 

selection, and NMF computations, a consistent random seed value of 12345 was 

employed to ensure reproducibility. Sample clustering was determined using the 

Euclidean distance metric, with individual sample subgroup membership ascertained by 

extracting matrix coefficients and assigning samples to the subgroup corresponding to 

their highest coefficient. 
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Training BL epitype classifier 

Using the LPS R package, a linear predictor model was engineered to ascertain 

the optimal probe count necessary for categorizing samples into HyperBL and HypoBL 

epigenetic subtypes, similar to that described in Wright et al.(57) Initially, a training set 

composed of 77 HyperBL and 66 HypoBL specimens was compiled, in conjunction with 

a validation set containing 40 HyperBL and 35 HypoBL samples. A series of models, 

each incorporating a variable number of probes, underwent assessment within the 

training set, employing a leave-one-out cross-validation strategy to identify the optimal 

number of probes for the LPS model. The iteration incorporating 60 probes, selected 

from an initial pool of 10,000 probes employed for NMF clustering, demonstrated the 

lowest mean error rate. When this model was applied to the validation cohort, the LPS 

score distribution within each epigenetic subtype mirrored that of the training cohort, 

effectively negating the presence of model overfitting. Employing probability 

determinations based on Bayes' theorem, a 90% certainty threshold was established for 

definitive epitype classification. Accordingly, samples were designated to an epitype 

only if the likelihood of their belonging met or exceeded the 90% threshold; otherwise, 

they were considered unclassified. 

Genome-wide methylation profiling with long reads 

The occurrence of 5mC in the long-read sequencing data was determined with 

Nanopolish(62) (v. 0.8.5) using the combination of raw signals from the sequencer 

found in the fast5 files and aligned PromethION bam files as input. Methylation 

frequencies (beta values) at reference CpGs were then summarized using the 

Nanopolish “calculate methylation frequency” script and enabling the split flag (-s) to 

obtain single CpG methylation. Beta values where subset down to retain only the 

autosomes (chr:1-22), removing the sex (X & Y) chromosomes. The analysis of long-

read methylation profiling was done using LCR-modules and the code is available at 

https://github.com/LCR-BCCRC/lcr-modules. 
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The DSS(63) R package was utilized to execute differential methylation analyses 

on PromethION sequencing data, adhering to the procedure outlined in the official 

tutorial. Differentially methylated CpG sites were characterized by a mean methylation 

differential exceeding 0.1 between epitypes, coupled with a false discovery rate (FDR) < 

0.05. Differentially methylated regions (DMRs) were identified under the criteria of a 

mean methylation difference surpassing 0.1 between epitypes, an FDR < 0.05, and a 

composition of at least 4 CpGs.   

Estimating methylation entropy from long-read data 

Shannon entropy scores were computed from methylation values from 

Nanopolish using CpelNano(64). Comparative analysis of these scores across varied 

transcriptional states between the two epitypes was conducted utilizing the Wilcoxon 

rank-sum test (base R, RRID:SCR_001905). Promoter regions exhibiting significant (Q 

< 0.05) differences in entropy scores, specifically those promoters hypomethylated with 

low entropy scores in HypoBL were further analyzed for enrichment using the 

rGREAT(65), package within R following the recommended guidelines outlined in the 

tutorial. The resulting Gene Ontology (GO) Biological Processes enrichment data were 

compiled via the getEnrichmentTables function to obtain the final over-enrichment 

results table. 

DNA Extraction and PromethION sequencing 

High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract 

HMW DNA Kit (cat. no. 67563, QIAGEN, Germantown, MD, USA). Genomic libraries 

were prepared, conforming to Oxford Nanopore Technologies’ protocols, using the 

SQK-LSK109 Ligation Library Kit. NEB Ultra II kit (New England Biolabs, Ipswich, MA, 

USA, cat. no. E7646A) was used for end-repair and A-tailing. NEBNext quick ligase 

(E6056S) was used to ligate the Oxford Nanopore adapters. A final size selection of 

0.4:1 ratio (magnetic beads to library) was done to select against smaller molecules. 

PromethION sequencing proceeded using the R9.4.1 pore flow cell on the PromethION 

Alpha-Beta instrument and the beta release software version 19.06.9 (MinKNOW 
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v3.4.6, GUI v3.4.12).  A DNase I nuclease flush (Invitrogen cat no. AM2222) was 

performed after 18 hours as per Oxford Nanopore protocol, version 

NFL_9076_v109_revD_08Oct2048. Base calling from the resulting fast5 files was 

performed with guppy v3.2.1 and the reads were mapped to GRCh38 using minimap2.  

Annotation of probes with chromatin and transcriptional state 

To refine our annotations, probes were mapped to chromatin and transcriptional states, 

as defined by the lymphoblastoid B-cell line GM12878 obtained from the ChromHMM 

track of the UCSC Genome Browser. The chromatin states were partitioned as follows: 

states 1–3 were classified as Promoter regions, indicative of active, weak, and poised 

promoters; states 4–7 were designated as Enhancer regions, encompassing strong and 

weak enhancers; state 8 delineated Insulator regions; state 9 was attributed to 

Transcriptional transition; state 10 to Transcriptional elongation; state 11 to Weak 

transcription; state 12 to Polycomb-repressed regions; and state 13 to Heterochromatin.  

Transcription factor binding motif enrichment analyses 

JASPAR enrichment analysis tool was employed to perform transcription factor binding 

motif enrichment analysis. Input for the analysis consisted of differentially methylated 

regions (DMRs) delineated by EBV status and epigenetic subtype. These regions were 

juxtaposed against a carefully constructed background comprised from EPIC array 

probes. Prior to analysis with JASPAR, both DMRs and background data were 

converted from hg19 to hg38 genomic coordinates. Adhering to established JASPAR 

protocols, enrichment calculations were conducted within a specified universe of 

genomic regions. The DMRs constituted the user-defined input set, while the 

background constructed from the EPIC array probes served as the user 

background/universe set.  

Gene expression and pathway analyses 

Gene expression was quantified at the transcript level using Salmon as described 

previously in Thomas et al.(9) Differential gene expression analysis was performed 

using edgeR between the epitypes, where RNA-seq data was available. The 
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experimental design model employed to determine differentially expressed genes 

between epitypes allowed for the controlling of variables including cell sorting status, 

patient sex, and EBV status, while identifying differentially expressed genes based on 

epitype. Cut-offs of padj < 0.01 and |log2FoldChange| > 1.5 were employed to 

determine significant differentially expressed genes. Differentially expressed genes 

were further visualized using R package ComplexHeatmap (version 2.2.0). Due to the 

disproportionate composition of EBV-positive samples between epitypes, and to ensure 

the most significant differentially expressed genes were best explained by epitypes, we 

created a linear model for said genes. The model included both EBV status and epitype 

as variables. 

Gene set enrichment analysis was performed using GSVA (version 1.34.0) comparing 

the two epitypes. Normalized expression data and gene sets obtained from signatureDB 

were used as input for gene set variation analyses. Gene sets were filtered for a 

minimum of 5 genes and a maximum of 500. Significant differentially enriched gene sets 

were determined based on a cut-off of p.adj < 0.01 and visualized using the R package 

ComplexHeatmap. 

Mitotic clock estimates 

Utilizing the EPIC array dataset, methylation-based mitotic clock estimates were 

ascertained via the epiCMIT (https://github.com/Duran-FerrerM/Pan-B-cell-methylome), 

in adherence to the protocol specified in the accompanying example documentation. 

Concurrently, mitotic clock estimates were obtained from a cohort of 1595 B-cell 

samples, as detailed in Duran-Ferrer et al.(18) These estimates facilitated subsequent 

comparative analyses across various B-cell malignancies and against baseline 

measurements from normal B-cell populations comparing the proliferative histories of 

the various entities. 

Data Availability Statement 

All primary whole genome, long-read promethION, and transcriptome sequencing 

data, as well as clinical data used in this publication can be found on the National 
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Cancer Institute's Genome Data Commons that can be accessed directly at 

https://portal.gdc.cancer.gov/projects/CGCI-BLGSP. The raw DNA methylation profiling 

data analyzed with EPIC arrays is deposited and publicly available through Gene 

Expression Omnibus (GEO) under accession number GSE292690 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE292690). All custom 

bioinformatics workflows, scripts, postprocessing, and visualization functions are openly 

available on GitHub through repository Lymphoid Cancer Research (LCR) modules 

(https://github.com/LCR-BCCRC/lcr-modules), LCR scripts (https://github.com/LCR-

BCCRC/lcr-scripts), and GAMBLR.open package 

(https://github.com/morinlab/GAMBLR.open). 
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Figures 

Figure 1. BL genomes contain global demethylation and localized 

hypermethylation. 

A) Global averaged methylation of normal centroblast samples (n=6) and EBV-positive 

BL (n=130). Methylation values from individual EPIC array probes were binned into 

1Mbp windows and the average of each bin is shown on a heat scale. Data are 

arranged in concentric rings starting from the outermost ring: normal centroblasts, the 

difference in methylation levels between EBV-positive BL and centroblasts, EBV-

positive BL. B) Global averaged methylation of normal centroblast samples (n=6) and 

EBV-negative BL (n=88). Methylation values from individual EPIC array probes were 

binned into 1Mbp windows and the average of each bin is shown on a heat scale. Data 

are arranged in concentric rings starting from the outermost ring: normal centroblasts, 

the difference between EBV-negative BL and normal centroblasts, EBV-negative BL C) 

A comparison of the number of significant DMPs (|abs(logFC)|> 0.25 and Q < 0.05) from 

Illumina EPIC array that were hypermethylated and hypomethylated among each of 

EBV-positive BL(n=130) and EBV-negative BL(n=88) when compared to normal 

centroblast (n=6) samples. D) The chromatin state associated with the DMPs in (C) 

shown as a total number of probes with differential methylation status (DMPs) in BL 

versus normal centoblasts. E) The averaged methylation of samples across DMRs 

shared between EBV-positive (n=130) and EBV-negative (n=88) samples when 

compared to normal centroblast (n=6) samples.  

Figure 2. Methylation patterns in BL are associated with EBV status 

A) The chromatin state associated with significant DMPs from the EPIC array that were 

hypermethylated and hypomethylated from comparing EBV-positive BL (n=130) against 

EBV-negative BL (n=88) shown as a number of all significant DMPs. The number of 

EPIC array probes contained within each chromatin region that were differentially 

methylated between BL and CB (from Figure 1C) is displayed as the background 

reference. B) The averaged methylation of samples across DMRs identified from the 
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EPIC array comparing EBV-positive (n=130) and EBV-negative BL (n=88). Normal 

centroblast samples (n=6) are shown as a reference.  C) The heatmap on the left 

represents averaged methylation of samples across DMRs identified from the EPIC 

array comparing EBV-positive (n=130) and EBV-negative (n=88) BL that were 

significantly (R2 > 0.4 and Q < 0.01) correlated with gene expression as quantified by 

RNA-Seq analysis. The heatmap on the right indicates the expression of the genes 

associated with each DMR. Rows in both heatmaps are in the same order with each 

row depicting a DMR and the expression of its associated gene.  

Figure 3. Identification of distinct epitypes in BL. 

A) Heatmap depicting the optimal 60 probes from the EPIC array which achieved the 

greatest accuracy for classifying samples into one of the two epitypes (linear predictor 

score, LPS class). Samples are ordered based on the probability score associated with 

belonging to the HyperBL epitype. Alluvial plots showing the distribution of epitype 

membership by EBV status (B), age group (C), and genetic subgroup (D). All 218 

samples with the available EPIC array profiling are included in the analysis. 

Figure 4. BL epitypes have distinct methylation patterns. 

A) Global averaged methylation of normal centroblast samples (n=6) and HyperBL 

(n=102). Methylation values from individual EPIC array probes were binned into 1Mbp 

windows and the average of each bin is shown on a heat scale. Data are arranged in 

concentric rings starting from the outermost ring: normal centroblast samples, the 

difference in methylation levels between HyperBL and centroblasts, HyperBL B) Global 

averaged methylation of normal centroblast samples (n=6) and HypoBL (n=88). 

Methylation values from individual EPIC array probes were binned into 1Mbp windows 

and the average of each bin is shown on a heat scale. Data are arranged in concentric 

rings starting from the outermost ring: normal centroblast samples, the difference in 

methylation levels between HypoBL and centroblasts, HypoBL C) The chromatin state 

associated with significant DMPs from the EPIC array that were hypermethylated and 

hypomethylated from comparing HyperBL(n=102) against HypoBL(n=88) shown as a 
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number of all significant DMPs (|abs(logFC)|> 0.25 and Q < 0.05). The number of EPIC 

array probes contained within each chromatin region that were differentially methylated 

between BL and CB (from Figure 1C) is displayed as the background reference. D) The 

averaged methylation of samples across DMRs identified from the EPIC array 

comparing HyperBL(n=102) and HypoBL (n=88). Normal centroblast samples (n=6) are 

shown as a reference and unclassified samples (n=28) are shown for comparison.  E) 

The heatmap on the left represents averaged methylation of samples across DMRs 

identified from the EPIC array comparing HyperBL (n=102) and HypoBL (n=88) that 

were significantly correlated with gene expression. The heatmap on the right indicates 

the expression of the genes associated with each DMR. Rows in both heatmaps are in 

the same order with each row depicting a DMR and the expression of its associated 

gene. Unclassified samples (n=28) are included for comparison F) Dot plot depicting the 

top 15 enriched families of TFs with binding sites identified within the DMRs based on 

epitype. The x axis depicts the different families of TFs while the y axis depicts the -

log10(p-value) of each TF. 

Figure 5. Mutational profiles associated with the BL epitypes. 

A) Oncoplot of coding mutations identified by whole-genome sequencing in the genes 

determined to be associated with BL(29) and their occurrence across epitypes. The 

percentages on the left indicate frequency of coding mutations of each specific gene 

across all samples. Each column of the oncoplot represents an individual sample. The 

mutations are colored according to their type. Grey tiles on the oncoplot represent 

absence of mutations of the specific gene. Samples (n=190) within each epitype are 

ordered based on EBV status to highlight key differences. B) Box-whisker plots showing 

the mutation burden across HyperBL (n=102), HypoBL (n=88), and unclassified (n=28) 

samples. In order from left to right the plots show the total number of coding mutations, 

driver mutations, and genome-wide mutation load as identified from the whole-genome 

sequencing. Samples were subject to a Wilcoxon rank sum test (*P < 0.05, **P < 0.01, 

***P<0.001, P values at or above 0.05 are not shown) C) Estimated number of 

mutations per COSMIC signatures SBS1, SBS5, and SBS9 in BL tumors (n=218) 
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stratified by epitype. Each point represents individual sample, and the y-axis shows total 

number of mutations associated with that signature. Samples were subject to a 

Wilcoxon rank sum test (*P < 0.05, **P < 0.01, ***P<0.001, P values at or above 0.05 

are not shown). 

Figure 6. Patterns of gene expression associated with epitypes membership.  

A) The heatmap displays the 213 differentially expressed genes between epitypes, with 

rows representing differentially expressed genes and columns representing samples. 

Rows and columns are clustered using Manhattan distances. The epitype membership 

and EBV status of each sample is shown at the top. Samples are split based on epitype 

with HyperBL (n=102) cases on the left, HypoBL (n=88) cases in the middle and 

unclassified (n=28) cases on the right. B) Heatmap representing the expression of 32 

gene sets from signatureDB with significant (Q <= 0.0025) differences between 

epitypes. Samples from 218 patients were clustered and ordered on their expression of 

genes within each gene set. Rows represent the gene sets and columns represent 

samples. Row and columns were clustered using Manhattan distances. 

Figure 7. Survival outcomes of adult BL patients stratified by epitype. 

Outcomes of adult BL when stratified by epitype. Kaplan-Meier survival analyses was 

conducted within the adult cases, for whom the follow-up data was most complete. 

HyperBL patients were compared to HypoBL patients to analyze progression-free (A) 

and overall (B) survival, including the unclassified cases. All times are shown in years. 

Log rank p-value is shown, and the pairwise comparisons were conducted separately 

across the indicated groups. The risk tables show the number of patients at the 

specified timepoint. 
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