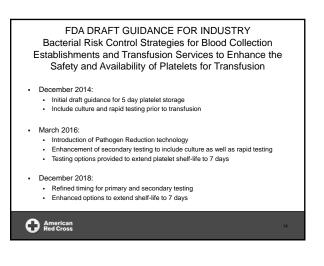
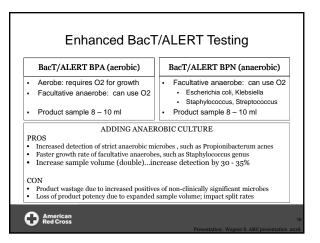

First Line of Defense: the eBDR	Blood Center: Preventive Measures
Automation Automation Big and Big an	 Disinfectant of VP Site: - 2% Chlorhexidine gluconate - Isopropyl alcohol Diversion Steps: ex; initial 20-50 ml of collection to pouch
American Red Cross	American Red Cross





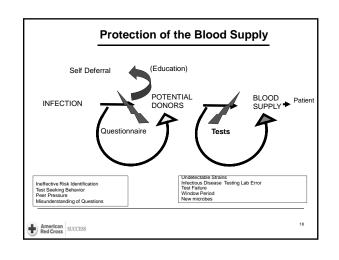
2018 FDA DRAFT GUIDANCE FOR INDUSTRY Apheresis Platelets Bacterial Risk Control Strategies			
Strategy	Performed by ARC		
Primary culture: □ Perform ≥ 24 hrs post collection □ Incubate for minimum of 12 hours □ Aerobic and anaerobic testing OR □ Pathogen Reduction	* * *		
During 5 day platelet storage: Secondary culture on Day 3 or 4 OR Secondary testing with a rapid [Verax] test	No		

Yes

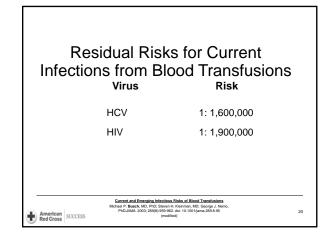
Donor Eligibility Impact with **Positive BacT/ALERT**

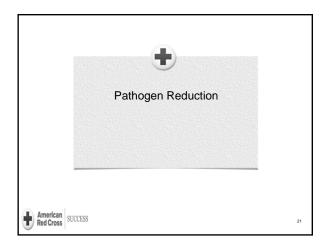
INDEFINITE DEFERRAL

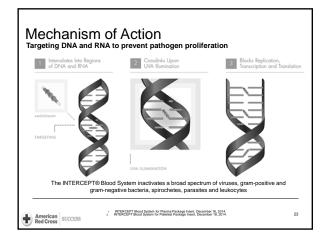
Pathogen Reduction

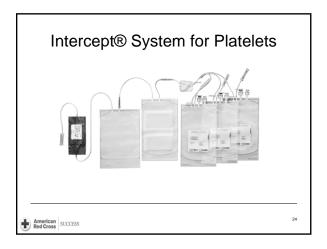

American Red Cross

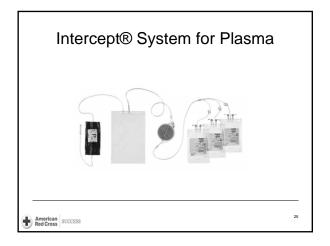
Enteric (E coli, Klebsiella, Strep bovis)

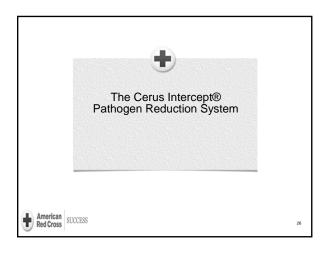

OR

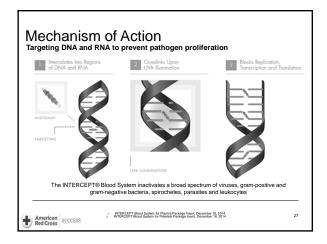

- Oropharyngeal (Strep Beta hemolytic, Strep viridans)
- . Staph aureus organisms
- · Donor implicated in highly probable septic transfusion reaction
- · Skin (non-Staph aureus)/ environmental contaminant -after second incident

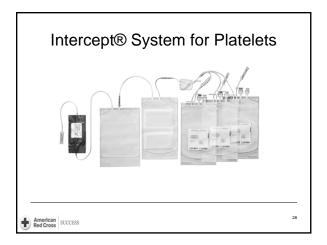


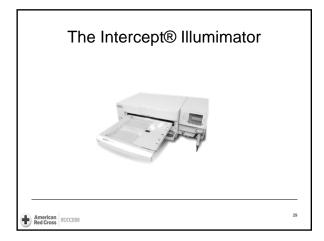

lear Implemented	Disease	Test
1948	Syphilis	Antibodies
1971	Hepatitis B	Hep B Surface Ag
1985	HIV	HIV 1 antibodies
1986	Non A-Non B Hepatitis	ALT
1986	Hepatitis B	Antibodies to core antigen
1988	HTLV	HTLV 1 antibodies
1990	Hepatitis C	Antibodies to Hep C Virus
1992	HIV	HIV 2 antibodies
1995	HTLV	HTLV 2 antibodies
1996	HIV 1	HIV 1 p24 antigen
1998	HIV 1 and Hepatitis C	Nucleic Acid Testing
2003	West Nile Virus	Nucleic Acid Testing
2007	Trypanosoma cruzi	Antibodies
2008	Hepatitis B	Nucleic Acid Testing

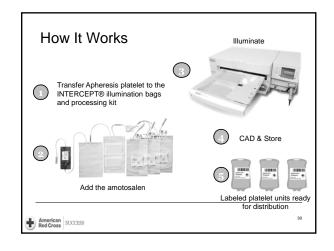


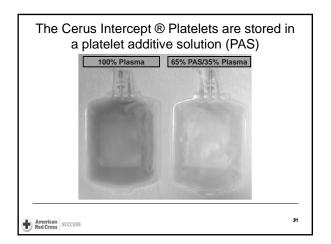


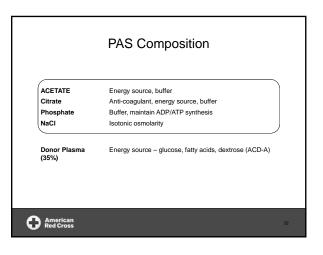

Pathogen Reduction			tion	
i anog		cuuc		
Table 1 Degree of reduction of paths	mens in log (adapted from	[24] with Permission \		
	Amotosalen/UVA	Riboflavin/UV	UVC	
Enveloped virus				
HBV	>5.5	2.3	na"	
HCV	>4.5	3.2	na	
HIV (cell free)	>6.2	>5.9	1.4	
HIV (cell-associated)	>6.1	>4.5	na	
HTLV-I	4.7	na na	na	
CMV (cell-associated) West Nile virus	>5.9	na >5.1	na 5.4	
Chikungunya	>6.0	>5.1	5.4	
Influenza A virus	>5.9	>5	na	
Nonenveloped virus				
HAV	0	1.8	na	
Parvovirus B19	3.5 to 5.0	>5	5.46	
Bacteria				
S. aureus	≥6.6	≥ 4	>4.8	
S. epidermidis	≥6.6	4.2	4.8	
P. aeruginosa F. coli	45	4.6	4.9 >4	
	26,4	4,4	>4	
Spirochaete bacteria				
T. pallidum	>6.8	na	na	
B. burgdorferi	>6.8	na	na	
Parasite				
T. cruzi	>5.3	6	na	
P. falciparum	>6	>3.2	na	
 * Information not available	e.			

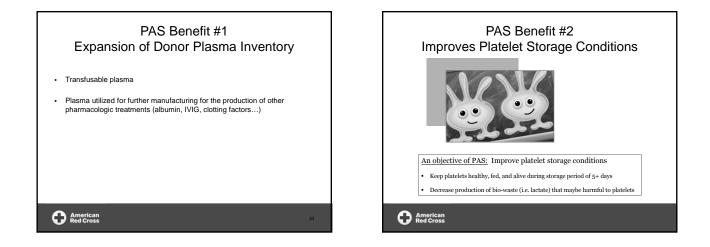


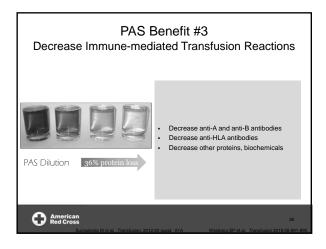


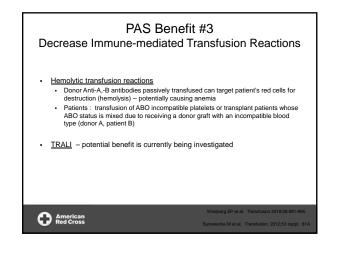


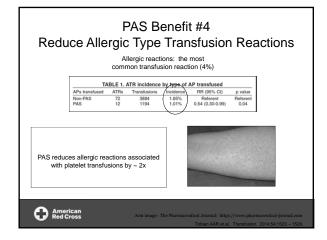


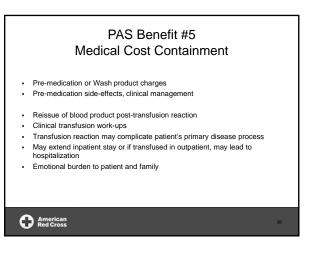


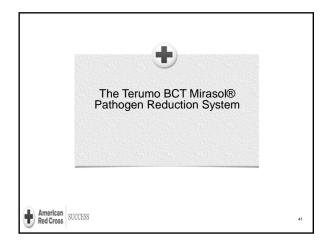


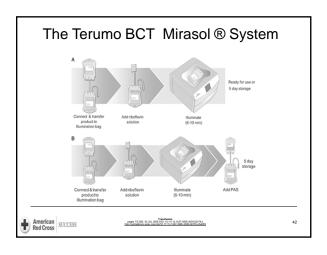


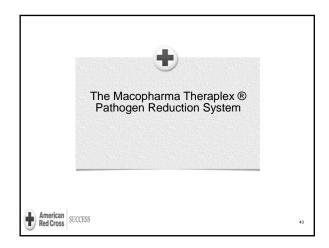


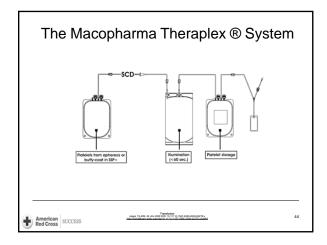


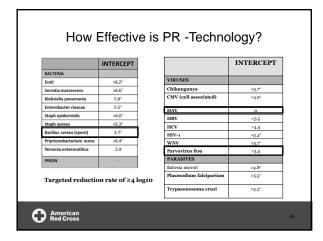


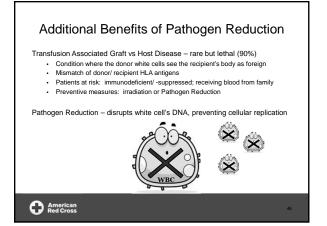


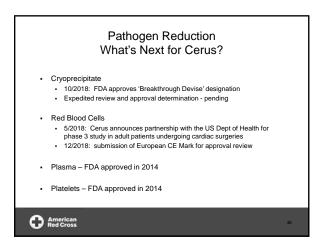


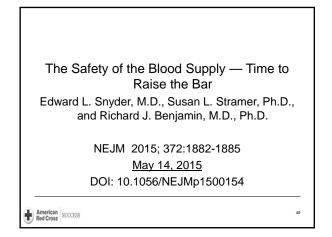


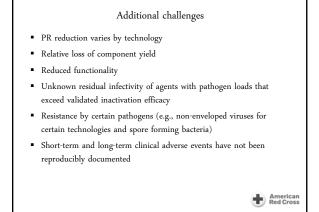

	Platelets in PAS-3	Platelets in 100% Plasr
Collection Specification	5	
Platelet Source	Amicus Apheresis (PAS-3)	Trima Apheresis
Suspension Medium	PAS-3 and plasma (32-47%)	100% Plasma
Platelet Input Volume	300 – 390 mL	300 – 390 mL
Platelet Dose	$3.0 - 6.0 \times 10^{11}$	$3.0 - 5.2 \times 10^{11}$
Platelet Count	0.8 - 2.0x10 ⁹ /mL	0.9 - 1.7x10 ⁹ /mL
RBC Content	< 4x10 ⁶ RBC/mL	< 4x10 ⁶ RBC/mL
Processing Specification	6	
Number of Storage Bags	1	1
CAD Time	6-16 Hrs	12-24 Hrs
Maximum Storage	5 Days	5 Days

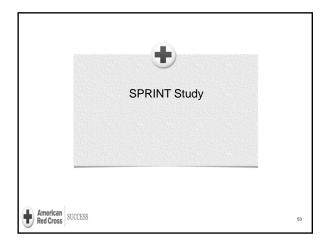

	PAS	Pathogen Reduction
Sepsis		\checkmark
rA-GvHD		\checkmark
Allergic	\checkmark	
FRALI - theoretical	\checkmark	
Hemolytic [ABO incompatibility]	\checkmark	
Increased Plasma Inventory	\checkmark	
Maintain/ Expand Donor Base		\checkmark







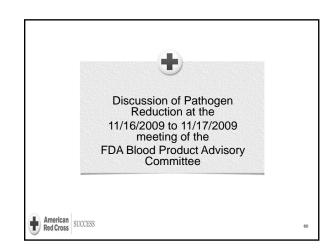




Component and Source	Manufacturer and Technology	Treatment Process	Manner of Inhibiting Replication	Regulatory Status
Platelets				
Individual volunteer donors	Cerus Intercept Blood System	Psoralen (amotosalen) and UVA light exposure	Formation of DNA and RNA monoadducts and cross- linkage	FDA approved; CE marked
	Terumo BCT Mirasol Pathogen Reduction Technology (PRT) System	Riboflavin and ultraviolet light exposure	Direct DNA and RNA dam- age and guanine modifi- cation	Phase 3 study planned in the United States; CE marked
	Macopharma Theraflex ultraviolet platelets	UVC light exposure	Direct DNA and RNA damage and thymine dimer formation	CE marked
Plasma				
Pools of volunteer and paid donors	Octapharma Octaplas	Plasma pools treated with solvent, tri-n-butyl phosphate and deter- gent (octoxynol)	Lipid membrane disruption of enveloped viruses	FDA approved; CE marked
Individual and minipools of volunteer donors	Cerus Intercept Blood System	Psoralen (amotosalen) and UVA light exposure	Formation of DNA and RNA monoadducts and cross- linkage	FDA approved; CE marked
Individual volunteer donors	Macopharma Theraflex MB Plasma System	Filtration, methylene blue treatment and visible light exposure	DNA and RNA damage by type I and type II redox reactions	CE marked
	Terumo BCT Mirasol PRT System		Direct DNA and RNA damage and guanine modification	CE marked
Whole blood				
Individual volunteer donors	Terumo BCT Mirasol PRT System	Riboflavin and ultraviolet light exposure	Direct DNA and RNA damage and guanine modification	Phase 3 studies planned in the United States, completed in Africa
Red cells				
Individual volunteer donors	Cerus Intercept Blood System	Frangible Anchor-Linker Effector (\$303) and glutathione	Formation of DNA and RNA monoadducts and cross- linkage	U.S. phase 2 and European phase 3 studies complete

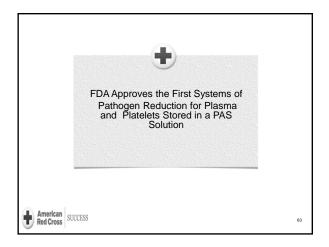
Pathogen-Reduction Technologies Approved and in Development in the United States and Europe.*				
Component and Source	Manufacturer and Technology	Treatment Process	Manner of Inhibiting Replication	Regulatory Status
Platelets				
Individual volunteer donors	Cerus Intercept Blood System	Psoralen (amotosalen) and UVA light exposure	Formation of DNA and RNA monoadducts and cross- linkage	FDA approved; CE marked
	Terumo BCT Mirasol Pathogen Reduction Technology (PRT) System	Riboflavin and ultraviolet light exposure	Direct DNA and RNA dam- age and guanine modifi- cation	Phase 3 study planned in the United States; CE marked
	Macopharma Theraflex ultraviolet platelets	UVC light exposure	Direct DNA and RNA damage and thymine dimer formation	CE marked
Plasma				
Pools of volunteer and paid donors	Octapharma Octaplas	Plasma pools treated with solvent, tri-n-butyl phosphate and deter- gent (octoxynol)	Lipid membrane disruption of enveloped viruses	FDA approved; CE marked
Individual and minipools of volunteer donors	Cerus Intercept Blood System	Psoralen (amotosalen) and UVA light exposure	Formation of DNA and RNA monoadducts and cross- linkage	FDA approved; CE marked
Individual volunteer donors	Macopharma Theraflex MB Plasma System	Filtration, methylene blue treatment and visible light exposure	DNA and RNA damage by type I and type II redox reactions	CE marked
	Terumo BCT Mirasol PRT System	Riboflavin and ultraviolet light exposure	Direct DNA and RNA damage and guanine modification	CE marked
Whole blood				
Individual volunteer donors	Terumo BCT Mirasol PRT System	Riboflavin and ultraviolet light exposure	Direct DNA and RNA damage and guanine modification	Phase 3 studies planne in the United State completed in Afric
Red cells				
Individual volunteer donors	Cerus Intercept Blood System	Frangible Anchor-Linker Effector (\$303) and glutathione	Formation of DNA and RNA monoadducts and cross- linkage	U.S. phase 2 and European phase 3 studies complete

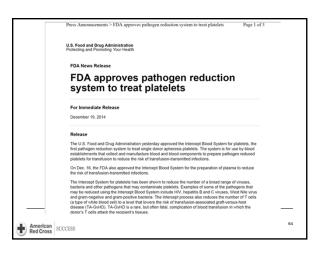
	From www.bloodjour	nal.org by guest on June 7, 2015. For pers	onal use only.	
TRANSFUSIO	N MEDICINE			
	utic efficacy and sa ogen inactivation: t	tfety of platelets treated with he SPRINT Trial	a photochemical process	
lleana Lopez-P Scott Murphy, I	laza, Steven Coutre, Ronald G	J. Benjamin, Sherrill J. Sikhter, Alvaro Pineda, I. Strauss, Lawrence T. Goodnough, Joy L. Fride I, Jin-Sying Lin, Peyton Metzel, Laurence Corasi	y, Thomas Raife, Ritchard Cable,	
photochemica activation usi amotosalen H topenia were ceive either ph or convention to 28 days. Th proportion of Organization (ing the period of 645 patient	ransfusion trial of platelets illy treated for pathogen la- ing the synthetic psoralen C. Patents with thrombocy- randomly assigned to re- otechemically treated (PCT) al (control) platelets for up e primary end point was the patients with World Health (WHO) grade 2 bleeding dur- iof plaselet support. A total s (318 PCT and 327 control) et. The primary end point.	the incidence of grade 2 bleeding (58.5% PCT versus 57.5% control), and the sec- ondary and paint, the incidence of grade 3 or 4 bleeding (4.1% PCT versus 4.1%) grades (4.1% PCT versus 4.1%) grades (4.1% PCT versus 4.1%) PCT versus 16.0 × 10 ³ control, average animeter of days to near gradester transitu- sion (15 PCT versus 2.4 control), and versus 6.1% PCT versus 2.4 control, and versus 6.1% PCT versus 2.4 control, and provide (16 PCT) versus 4.1% (16 PCT) versus 4.1\%	(P < .001). Transfusion reactions were fewer following PCT plateies (J.05% PCT versus A4% control P = .02, The inst- dence of grade 2 beheading was exploritant data of grade 2 beheading was explorated to sough post transfusion plateia count in- orements and days to next transfusion were decreased for PCT compared with conventional plateiers. (Blood. 2004;104: 1324-1641)	
Introductio	,	versus 6.2 control) were dimerent	© 2004 by the American Society of hematology	

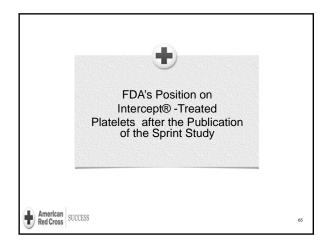

	PCT, n (%) n = 318	Control, n (%) n = 327	P.
Any grade 2 bleeding	186 (58.5)	188 (57.5)	<.01 [±]
Grade 2 bleeding by bleeding site			
Genitourinary	104 (32.7)	103 (31.5)	0.80
Mucocutaneous	82 (25.8)	65 (19.9)	0.08
Invasive sites	69 (21.7)	65 (19.9)	0.63 No diff
Gastrointestinal	60 (18.9)	63 (19.3)	0.92 and co
Respiratory	35 (11.0)	28 (8.6)	0.35
Musculoskeletal	15 (4.7)	18 (5.5)	0.72
Body cavity	0 (0.0)	1 (0.3)	1.00
Neurologic	0 (0.0)	0 (0.0)	\rightarrow
Any grade 3 or 4 bleeding	13 (4.1)	20 (6.1)	<.01 [±]
If The P value for the overall proportion 95% confidence interval of difference: — ut The P value for any grade 3 or 4 bles	-1, 0.07). By using this method, a P value	D1, based on a noninferiority test with a noninf of < .05 indicates that PCT was not inferior to test with a noninferiority margin of .07 (one-sic	control

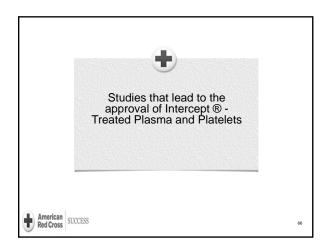
	PCT, n = 318	Control, n = 327	Р
Platelet transfusions			
Total number	2678	2041	-
Mean number per patient	8.4	6.2	< .001
Mean number per day of platelet support-	0.74	0.65	< .001
Interval between transfusions, d	1.9	2.4	<.001
Platelet dose, x 1011 (·		
Mean average dose	3.7	4.0	< .001
Percentage of platelet doses less than 3.0 x 10 ¹¹	20	12	< .01
Mean total dose over entire transfusion corriod	29.4	24.1	.01
Duration of platelet storage, d	3.4	3.6	< .05
RBC transfusions			
Mean number per patient	4.8	4.3	.13
Mean number per day of platelet support-	0.31	0.30	.53

<u> </u>	PCT; n = 318	Control; n = 32
Before transfusion		
Platelet count, × 10 ⁹ /L	15.1	15.2
1 h after transfusion		
Platelet count, × 10 ⁹ /L	36.5-	49.5
Count increment, × 10 ⁹ /L	21.4-	34.1
Corrected count increment, × 10 ³	11.1-	16.0
24 h after transfusion		
Platelet count, × 10 ⁹ /L	27.9-	36.1
Count increment, × 10 ⁹ /L	13.2-	21.5
Corrected count increment, × 10 ³	6.7-	10.1
<u> e</u> * P < .001 compared with control		


	stud	лу	
	PCT, %; n = 318	Control, %; n = 327	Р
Any adverse event-	99.7	98.2	.12
Grade III or IV adverse event	78.9	78.6	.92
Serious adverse event [±]	27.0	24.8	.53
Treatment-related adverse event [±]	26.4	29.4	.43
Death§	3.5	5.2	.34
CTC) ³⁸ and coded to Preferrer <u>a</u> † Serious adverse events we <u>a</u> ‡ Treatment-related adverse transfusions by the blinded inv <u>a</u> § One patient in each group	d Term by using Medical D re defined by using Food a events were reported as p estigator at each site	I Cancer Institute Common Toxic irectory for Regulatory Affairs (M and Drug Administration (FDA) or ossibly or probably related to the deaths involved pulmonary alveol	edDRA) ³⁹ iteria ⁴⁰ study platelet


SPRINT Study	
Conclusion: The incidence of grade 2 bleeding was equivalen for PCT and conventional platelets, although post transfusion platelet count increments and days to next transfusion were decreased for PCT compared with conventional platelets.	t
Red Cross SUCCESS Blood. 2004; 104:1534-1541.	59




62

Study Designs (Phases III and IV) for Product Study Designs (Phases III and IV) for Product Development of Human Platelets Using the Cerus Intercept® Blood System for **Development of Human Platelets Using the Cerus** Pathogen Inactivation Intercept® Blood System for Pathogen Inactivation A summary of FDA concerns presented for the BPAC discussion A summary of FDA concerns presented for the BPAC discussion Issue Summary — The FDA has concerns about efficacy (bleeding events) and safety (imbalance of adverse events). FDA Perspective presented by Jaro Vostal, MD, PhD: Even though the previous study (SPRINT) met the primary endpoint, S59 pathogen reduction process damages platelets secondary endpoints did not support the study conclusion that the pathogen reduction platelets were non-inferior to untreated platelets. Damage results in reduced circulation of treated platelets, which leads to lower corrected count increments, or CCIs, and more frequent platelet transfusions. Hemostasis appears to be impaired after S59 treatment in comparison to More platelets and more frequent transfusions were needed. conventional platelets, due to either low platelet counts or loss of platelet efficacy, or Mean days of grade 2 bleeding were higher in the treatment arm (p = hoth 0.023). S59 damaged platelets appear to be associated with ARDS, hypocalcemia, syncope and pneumonitis not otherwise specified. · Additionally, hemostatic adverse events were more frequently observed in the test arm. The data did not establish whether the reduced An additional phase III clinical trial is needed to resolve the hemostasis efficacy and hemostatic efficacy was attributable to lower platelet numbers or adverse event profile of S59 treated platelets impaired platelet function. http://www.aabb.org/advocacy/government/bpac/Pages/bpacmeeting111609.as px http://www.aabb.org/advocacy/government/bpaciPages/bpacmeeting111609.as px 61 American Red Cross SUCCESS American Red Cross SUCCESS

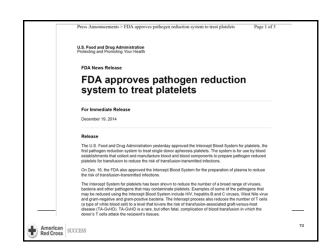
Package Insert for Intercept® -Treated Platelets

Post-Marketing Studies

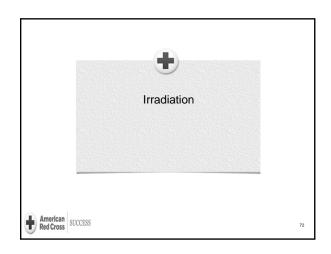
Safety data were obtained from three hemovigilance (HV) programs in routine use without patient selection: the Cerus hemovigilance program and the regulatory surveillance programs in France and in Switzerland.(39-49)

The populations monitored in the Cerus hemovigilance studies included 4,067 patients, where 59 patients were under the age of 1 year and 185 patients were 1-18 years of age. 51% of the patients enrolled in these studies were hematology-oncology patients, of which 12% were HSCT patients. Adverse events within 24 hours and serious adverse events within 7 days of platelet transfusion were reported. The frequencies of adverse events attributed to Intercept® processed platelet transfusions were not increased compared to conventional platelet transfusions reported in European regulatory hemovigilance programs.

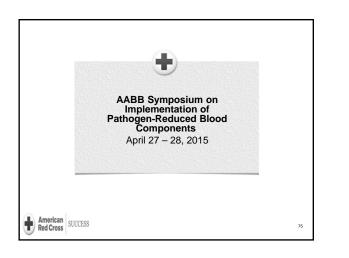
American Red Cross SUCCESS http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/Ap provedProducts/PremarketApprovalsPMAs/UCM427522.pdf

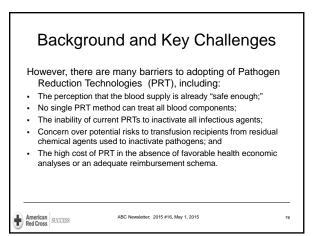

<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

Package Insert for Intercept® -Treated Platelets ANSM and Swissmedic Active HV Programs (France and Switzerland)


The number of TRALI reported to the HV systems during the years 2009-2013 is small, and the TRALI rates were similar in both groups. There were 6/187,142 TRALI cases per Intercept® processed platelet transfusions, for a TRALI rate of 0.33 per 10,000 platelet transfusion, compared to 37/1,109,135 TRALI cases per conventional platelet transfusions, for a rate of 0.32 per 10,000 platelet transfusions. Limitations of the hemovigilance system include data collection that was limited to only transfusion associated AEs (TRALI, TACO, TAD, etc.) as assessed by the reporter.

American Red Cross http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/Ap provedProducts/PremarketApprovalsPMAs/UCM427522.pdf 67


69

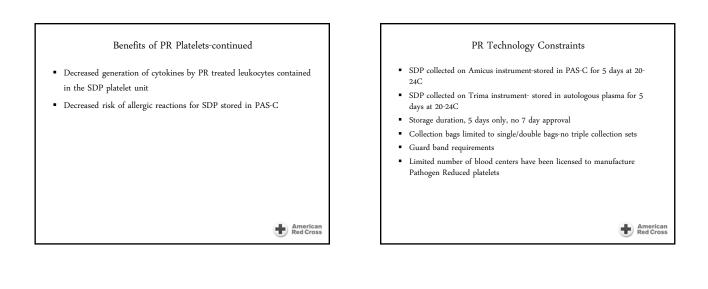


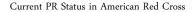
While the intercept System for platelets has been shown to be effective in reducing pathogens, there is no pathogen inactivation process that has been shown to eliminate all pathogens. <u>Certain viruses (e.g. non-</u>	
enveloped viruses, such as human parvovirus B19) and spores formed by certain bacteria are known to be	
enveloped viruses, such as human parvovirus 819) and spores formed by certain bacteria are known to be resistant to the Intercept process.	
enveloped viruses, such as human parvovirus B19) and spores formed by certain bacteria are known to be	



	BBBC Activity Translation and Charles Translation and Charles Translation and Charles Translation and Charles Translation and Charles Translation Translation and Translation Stranslation by the AABB Board of Directories may include Acoscianion Bulletins, which are approved for distribution by the AABB Board of Directories may include Acoscianion Bulletins, which are requirements for accivitation by the AABB Board of Directories may include Acoscianion Bulletins, which are requirements for accivitation by the AABB Board of Directories, may include a paradice, and and Franslation Service (BBT Standards). These changes are: united Explanation Date for Aphenesis Platelets Leukocytes Reduced B. Aciended Explanation Date for Aphenesis Platelets Leukocytes Reduced		1) Revisions to Requirements for Prevention of Transfusion-Associated Graft-vs-Host Disease Summary Standard 5.19.3 has been expanded and a new Standard 5.19.3.1 has been added. The newly renumber Standard 5.19.3 (formerly 5.1):1) has been expanded. These changes are intended to allow for the of certain pathogen reduction technologies to prevent transfusion-associated graft-vs-host disease. The standards read as follows: 5.19.3 feredition Prevention of Transfusion-Associated Graft-vs-Host Disease The BiTS shall have a policy regarding the transfusion-of-irradiated-components prevention transfusion-associated graft-vs-host disease. 5.19.3.1 Methods known to prevent transfusion-stored regarding the transfusion of irradiated-components be used, and include either irradiation of the used participate regarding the transfusion-associated graft-vs-host disease is be used, and include either irradiation of the used participate regarding approved by the FDA or Competent Authority. 5.19.3.2 At a minimum, cellular components shall be irrediated-when prepared by a method known to prevent transfusion-associated graft-vs-host disease with the other prepared by the prevent transfusion associated graft-vs-host disease with the prevent transfusion associ	use <u>i of</u> <u>hall</u> <u>i</u> or
American Red Cross	Irradiation Issues	73	American SUCCESS Irradiation Issues	74

Perspectives on US PRT Implementation	
d Snyder, MD, discussed Yale-New Haven Hospital's approach to implementing PR. He suggested that widespread adoption of PR may require an FDA mandate and accrediting organizations, like AABB and the College of American Pathologists (CAP), requiring PR in their standards. Dr. Snyder added that the Centers for Medicare & Medicaid (CMS) must reimburse hospitals for the additional cost of PR. Maintaining a dual inventory of PR platelets and standard issue platelets would present logistical difficulties, suggesting that moving to a 100 percent PR-platelet inventory is preferable, according to Dr. Snyder.	
merican SUCCESS ABC Newsletter; 2015 #16, May 1, 2015	77


American Red Cross SUCCESS


Action	Day 4	Day 5	Day 6	Day 7
	(mandated)	(mandated)	(voluntary)	(volun
Need to use a secondary	Yes	Yes	Yes	Yes
screening test for bacterial	(done the day of	(done the day of	(done the day of	(done the
contamination	transfusion, valid for	transfusion, valid	transfusion, valid	transfusio
	24 hours)	for 24 hours)	for 24 hours)	for 24 h
Need to change the label	No	No	Yes	Yes
on the platelet bag (in				
terms of the expiration				
date)				
Need to register with the	No	No	Yes	Yes
FDA to use these platelets				
Can Use Pathogen-reduced	Yes	Yes	No	No
platelets as a substitute for				
a secondary screening test				
for bacterial contamination				

Benefits of PR Platelets

- Multi-log reduction of most blood borne pathogens:
- --Bacteria ⇔gram (+) and gram (-)
- --Lipid-enveloped viruses (HIV, CMV, etc...)
- Effective inactivation of lymphocytes. Protects against TA-GVHD and eliminates need for either gamma or x-ray irradiation

American Red Cross

- American Red Cross initiated routine pathogen reduced for SDPs in July 2016
- Collected in platelet additive solution (PAS) on Amicus instrument
- 17/23 manufacturing sites have implemented INTERCEPT and are producing pathogen-reduced SDPs stored in PAS
- Distributions to 100+ hospital customers
- Additional manufacturing sites are coming on-line as well as other sites in the planning phase

American Red Cross

- Await FDA final guidance for Bacterial Risk Control Strategies to Enhance the Safety and Availability of Platelets...
- Guidance will assist hospitals with plans for implementation of PR
- Guidance will assist blood centers in planning and strategy for PR platelet production
- Ongoing hospital education regarding PR

American Red Cross

Acknowledgements

- Corrine Goldberg MD American Red Cross
- Jorge Rios MD American Red Cross
- Ed Snyder MD Yale University Hospital

American Red Cross